
SU-SEL-71-057

<-p A Modular Organization of a Digital
co Integrating Computer for the Numerical

Solution of Differential Equations N
CO
N
Q by

E.J.Schulz

December 1971

Technical Report No. 3606-6

; Reproduction in whole or in pert
is permitted for »ny purpose of
the United Stete* Government.

■•

-

', n W

This document has been approved for public
release and sale; its distribution is unlimited.

This work was supported in part by the
Joint Services Electronics Program
(U.S.Army, U.S.Navy and U.S.Air Force)
under Contract N00014-67-A-G112-0044

Reproduced by

NATSONAL TECHNICAL
INFORMATION SERVICE

Springfield, V*. 22151

/'*» o D D

|y| m*®m 11.,

J
I

RBDIOSnEiM ffßORRTOEW

SIMIFORD Elf CTROniCS LRRilflTOEllES
STRSIFORB UIHUEKSITV • Sim 088, CRUFORRIII

-<afsft*$ —.mm LL! ,

UNCIASSIFIED
Security Classification

DOCUMENT CONTROL DATA -R&D

ORIGINATING 6r*iviT» rO«rritirale auf/inr)
■ / im/.urn^ .infiofflfii.n fyicf f><- entered when the overall report is clas&ilied)

Stanford Electronics Laboratories
Stanford University
Stanford, California 94305
KIPQR T TITLE"

20. REPORT StCURITY CLASSIFICATION

Unclassified
2b. GROUP

A MODULAR ORGANIZATION OF A DIGITAL INTEGRATING COMPUTER FOR THE NUMERICAL SOLUTION
OF DIFFERENTIAL EQUATIONS

4 t STRIP^I.'E NOT E5 (Type ot report and inclusive dotes)

Technical Report No. 3606-6, December 1971
» 'Li THORIS» (First name, middle initial, last name)

E. J, Schulz

6 REPORT DATE

December 1971

7«. TOTAL NC. OF PAGES

83

7b. NO. OF REFS

42
Bd. CONTRACT OR GRANT NO

N00014-67-A-0112-0044
b. PROJEC T NO.

9«. ORIGINATOR'S REPORT NUMBER(S)

TR No. 3606-6
SEL-71-057

9b. OTHER REPORT NO(S> (Any other numbers thet may be assigned
this report)

,o D.STR.BUTION STATEMENT Reproduct.'or in whole or in part is permitted for any purpose of
the United States Government. This document has been approved for public release and
sale; its distribution is unlimited.

II. SUPPLEMENTARY NOTES 12. SPONSORING MILI TARY ACTIVITY

Joint Services Electronics Program
U.S. Army, U.S. Navy, U.S. Air Force

The automatic solution of differential equations may be accomplished by either
modeling the equation on an analog computer or by solving it numerically on a gen-
eral-purpose computer. Both methods are cumbersome and have the disadvantages of
low accuracy and slow speed, respectively. The development of the digital differen-
tial analyzer promised a machine with improved accuracy and speed. The difficulty
in programming and the reliance on complex switching networks or patch boards brought
about by ever-increasing parallelism, however, have prevented the full exploitation
of the DDA capabilities.

A modular machine structure employing serial-parallel processing and using in-
cremental integration as its basic algorithm has been developed. The system consists
of self-contained modules which may be operated independently or may be combined to
solve numerically one or more differential equations. Modularity and serial-parallel
processing simplify the communication methods within and between modules to permit
automatic programming; the hardware requirements are reduced as-in serial processing,
but the iteration time cannot exceed a fixed maximum regardless of the problem.' ^

To eliminate some of the masked instabilities inherent in circular number sys-
tems, a two-loop number system is presented. An extension of the two-loop system
leads to number systems with a hysteresis. Except for the case of multi-bit commu-
nication, it is possible to predict the outcome of the integrating cycle sufficiently
to permit post-multiplication of the integral increment by a constant or a variable
simultaneously with the integrating cycle. This capability considerably reduces the
solution time and required hardware. (Continued)

N
\

DD,FN°OR:J473
s ". 0101 • 807-6801

(PAGE 1) UNCIASSIFIED
Security Classification

•mtHi H

UNCLASSIFIED
curitv Classification Security

DIGITAL INTEGRATION
NUMERICAL SOLUTIONS
INCREMENTAL COMPUTATION

ABSTRACT (continued)

Combining the machine with a general-purpose
computer allows automatic programming and scaling.
In this environment, the user-generated program
consists only of the differential equations entered
in a standard format, declarations of dependent and
independent variables, the number of coupled equa-
tions to be solved, and some control statements.

'- I N K

ROLE' WT

DD ,Fr..1473 BACK)
(PAGE 2)

UtCIASSIFIED
Security Classification

SEL-71-057

A MODUIAR ORGANIZATION OF A DIGITAL INTEGRATING COMPUTER
FOR THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

by

E. J. Schulz

December 1971

Reproduction in whole or in part
i» permitted for any purpose of
the United State« Gorernaent.

This document has been approved for public
release and sale; its distribution is unlimited.

Technical Report No. 3606-6

This work was supported in part by the
Joint Services Electronics Program

(U.S. Army, U.S. Navy and U.S. Air Force)
under Contract N00014-67-A-0112-0044

Radloseience Laboratory
Stanford Electronics Laboratories

Stanford University Stanford, California

© Copyright 1972

by

Eckhard Josef Schulz

SEL-71-057 ii

«***s*«se*

ABSTRACT

The automatic solution of differential equations may be accomplished

by either modeling the equation on an analog computer or by solving it

numerically on a general-purpose computer. Both methods are cumbersome

and have the disadvantages of low accuracy and slow speed, respectively.

The development of the digital differential analyzer promised a machine

with improved accuracy and bpeed. The difficulty in programming and the

reliance on complex switching networks or patch boards brought about by

ever-increasing parallelism, however, have prevented the full exploitation

of the DDA capabilities.

A modular machine structure employing serial-parallel processing and

using incremental integration as its basic algorithm has been developed.

The system consists of self-contained modules which may be operated inde-

pendently or may be combined to solve numerically one or more differen-

tial equations. Modularity and serial-parallel processing simplify the

communication methods within and between modules to permit automatic pro-

gramming; the hardware requirements are reduced as in serial processing,

but the iteration time cannot exceed a fixed maximum regardless of the

problem.

To eliminate some of the masked instabilities inherent in circular

number systems, a two-loop number system is presented. An extension of

the two-loop system leads to number systems with a hysteresis. Except

for the case of multi-bit communication, it is possible to predict the

outcome of the integrating cycle sufficiently to permit post-multiplica-

tion of the integral increment by a constant or a variable simultaneously

with the integrating cycle. This capability considerably reduces the

solution time and required hardware.

Combining the machine with a general-purpose computer allows auto-

matic programming and scaling. In this environment, the user-generated

program consists only of the differential equations entered in a standard

format, declarations of dependent and independent variables, the number

of coupled equations to be solved, and some control statements.

iii SEL-71-057

,■•

'.H'fiW»*?***-- . HMRMMMWW

CONTENTS

Pagq

I. INTRODUCTION 1

A. Numerical Solution of Differential Equations 1

B. Background 2

C. Statement of the Problem 3

D. Approach 5

II. PRINCIPLES OF DIGITAL DIFFERENTIAL ANALYZERS 7

A. Principles of Numerical Solution 7

1. Rectangular Integration 7
2. Modified Trapezoidal Integration 10

B. DDA Solution of Differential Equations . . . , 11

C. Examples 11

1. Example 1 11
2. Example 2 13

D. Construction Parameters 15

III. CONCEPT OF THE PROPOSED MACHINE 17

A. Requirements , 17

B. Accuracy and Solution Speed 17

C. Ease of Programming 18

D. Solution Repeatability ... 19

E. Solution Reversibility 19

F. Modularity and Expandability 20

G. Adaptability 20

IV. NUMBER REPRESENTATION 21

A. Binary Number System 21

F.. Circular Number System 21

C. Two-Loop Number System 23

D. Overlapping Loops 24

E. Logical Implementation 29

1. Circular Number System 29
2. Two-Loop Number System 29
3. Multi-Bit Transfer Two-Loop Number System 31

v SEL-71-057

CONTENTS (Cont)

Page

V. THE FUNCTIONAL BLOCK 35

A. The Integrating Function 35

B. Constant Multiplication 37

C. Implementation 39

D. Post-Multiplication by a Variable 42

E. Simultaneous Integration and Post-Multiplication ... 46

F. Extended Simultaneous Integration and Post-
Multiplication 48

G. Multi-Bit Transfer 49

H. Floating-Point Arithmetic 51

I. Floating Point Post-Multiplication . . 52

VI. THE MULTI-MODULE SYSTEM 55

A. Processing Methods 55

B. Inter-Module Communication Methods 56

1. Vertical-Communication Approach 56
2. Horizontal-Communication Approach 57

VII. THE MODULE 59

A. Processing Methods 59

B. Intra-Module Communication Methods 60

1. Function Output Storage 60
2. Function Input Storage 61

C. Memory Organization ... 61

VIII. THE PROPOSED MACHINE 63

A. Operating Procedure 63

B. Communication within the Module 64

C. Communication between Modules 66

D. External Function Input 68

E. Iteration Time 68

F. The Processor (39

G. Programming and Interface 71

H. Computer Simulation 75

SEL-71-057 vi

■WHHHnnMMlHHHttHHlH

CONTENTS (Cont:

IX. CONCLUSION

BIBLIOGRAPHY .

Page

79

81

vii SEL-71-057

.-*0»*—»-

3$&>fe«*fi£fe!WnMMn * woo*w««!«««3^B^»wiTsc»*K«."W^'aff! '"äWi1,1;- JBSBBäKSßff'

Figure

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

ILLUSTRATIONS

Page

Rectangular integration 8

Digital integrator for rectangular integration 9

Digital integrator symbol . . 9

Solution diagram for Van der Pol's equation 12

Digital integrator symbol with scaling parameters 12

.. .2
Solution diagram for yy+y +1 = 0 14

Circular number system 22

Two-loop number system 23

Incremental integration, using circular number system ... 26

Incremental integration, using two-loop number system ... 26

Two-loop number system with overlapping loop 26

Incremental integration, using a number system with
1-bit hysteresis 28

Incremental integration, using a number system with
2-bit hysteresis 28

Karnaugh maps for integral overflow generation 30

Increment detection for multi-bit transfer two-loop
system 32

Functional block of proposed machine . 35

Structure of functional block 35

Functional block symbol 42

Generation of 1/y 43

Generation of sin ux and cos uac 44

. .., 2 2,1/2 J. 2 2,-1/2
Generation of d(x +a) , d(x +a) , and
din(x2 + a2) 45

Channeling in vertical communication 57

Horizontal communication 58

ix SEL-71-057

. ■

 i' ■■■■»'«in i inn. ■ >».IUIR a. ii mnmm II »n. i.i'ni n lMlulim»l«awMMWMWWaWMWWMWWWg»WWWWi

ILLUSTRATIONS (Cont)

Figure Pege

24. Channeling in horizontal communication 58

25. Block diagram of a module 63

26. Flow chart for module operation 65

27. Matrix showing communication between modules 67

*2
28. Solution diagram for yy+y +1 = 0 73

29. Block diagram of GPC-DIC combined system ... 75

30. FORTRAN simulation program of DIC module ... 76

TABLES

Number

1. Scaling for d2v/dt2 - (1-v2) dv/dt + v = 0 13

2 2 2
2. Scaling for y - d y/dx + (dy/dx) +1 = 0 , . 15

3. Binary representation of numbers 22

4. Generation of increments for circular and
two-loop number systems . . 25

5. Generation of increments for systems with
overlapping loops 27

6. DIC program for dy = -y • dy/y -dx/y 74

SEL-71-057

«mMMHMMU

M

a

ACKNOWLEDGMENT

I wish to express my sincere appreciation to my research advisor,

Professor Allen M. Peterson, for his guidance and suggestions and to

Professors E. Davidson and 0. Buneman for their thorough reading of

this manuscript. I want to acknowledge also the many helpful discus-

sions on automatic programming with my colleague, B. Parasuraman.

xi SEL-T1-057

aBJgg

Chapter I

INTRODUCTION

A. Numerical Solution of Differential Equations

The quantitative study of physical systems requires the expression

of the system characteristics in mathematical form. This expression

usually results in some differential equation which, when evaluated,

shows behavior corresponding to that of the original system. The equa-

tions may be linear, nonlinear, or partial differential equations.

The solution of differential equations requires that we find some

function y = y(x,C) such that if the function y is substituted in

the differential equation [say, dy/dx = f(y,x)] the result is an

identity. Since the function y can be found analytically only in a

small number of cases, we resort to numerical methods of finding the

solution. Numerical solutions require the complete specification of

the differential equation (initial conditions and parameters) and there-

fore are always particular solutions. The numerical solution may be

found by either differentiating or integrating, but integration is em-

ployed almost exclusively because differentiation involves the genera-

tion of the difference between two very small quantities (which ideally

tend toward zero) and therefore introduces unnecessary errors.

Numerical integration is achieved by replacing the integrand with

some quadrature formula and evaluating this over the required interval

of the independent variable. In this process the independent-variable

interval is div.ded into subintervals which are usually of equal lengths.

Traditionally, two basic methods have been available to obtain the

numerical solutions of differential equations. The first is to solve

the equation on a general-purpose computer, using such numerical tech-

niques as the modified Euler integration, Adam's trapezoidal integration,

or summation of the Taylor series. The second is to model the equation

on an analog computer. Given that we desire high-solution speeds and

accuracies, neither of these methods is ideal. The general-purpose com-

puter is often too slow, and the analog computer &imply cannot provide

the accuracy.

SEL-71-057

If, in the system under study, the dependent variables vary only

with respect to time or some other single independent variable, we have

an ordinary differential equation; if, on the other hand, the dependent

variables vary with respect to two or more independent variables, the

equations will contain partial derivatives. Because in the analog com-

puter all integration is with respect to time only, these partial differ-

ential equations cannot be solved directly. The use of the "generalized

integrator," which includes a multiplier, allows in effect integration

with respect to a variable other than time, but the multiplier also in-

troduces additional errors and represents additional hardware and cost.

Because the analog computer is a completely parallel machine (it

consists of many processors operating simultaneously), its programs must

be hard wired for continuous operation. This requires the use of plug

boards.

B, Background

The earlif development of the digital differential analyzer (DDA),

which is essentially the digital equivalent of the analog integrator, al-

lowed the modification of analog computers. Replacing analog integrators

with DDA integrators resulted in systems capable of high-speed solutions

and the desired high accuracies; in addition, the independent variable

was no longer restricted to time as in the analog integrator.

The first such machine to be built was the MADDIDA (Bartee et al,

1962), developed in 1950. It was considered a low-cost device, employ-

ing a magnetic drum memory to allow arbitrary stored interconnections

such that any DDA integrator could be connected to any other integrator,

including itself. The MADDIDA used binary communication, which requires

a single bit and restricts both the independent variable input and the

integral output increment to the values of +1 and -1.

Since 1950, the need for higher speed and accuracies has produced

many technological improvements. More accurate algorithms were intro-

duced (Yu, 1968; Nilsen, 1968) and, to increase operating speed, subse-

quent systems had high degrees of parallelism. This latter trend made

it practically impossible to retain stored programs, leading to the

alternatives of single-purpose computers or patch-board programming.

SEL-71-057 2

The TRICE (Transistorized Real Time Incremental Computer - Expandable),

developed by Packard Eell Corporation in 1958 (Mitchell, Ruhman, 1958),

was such a machine using plug-board programming and parallel processing

at a rate of 100,000 iterations/sec.

Past and present DDAs have been designed essentially in the manner

of analog computers, and it is this analog approach which, in my opinion,

has prevented the development of a truly general DDA machine which can

find wide acceptance. Existing DDAs are for the most part "one applica-

tion" computers, solving the same equations or sets of equations with

different initial conditions or parameters. They are used for naviga-

tional calculations, for computation of projectile trajectories, or for

high-o~der control-system equations. Any change in programming involves

either hardware modifications (such as plug-board reprogramming) or com-

plex time and/or space multiplexing schemes to effect the proper inter-

connection of the various integrators. As a result, these methods se-

verely limit the application of the machines because they require either

a great amount of time and skill on the part of a programmer or enormous

amounts of multiplexing hardware. Such disadvantages have acted as

strong deterrents to the full exploitation of the inherent capabilities

of digital incremental integration.

C. Statement of the Problem

This investigation has sought a new approach to the problem, di-

rected toward the development and organization of a special-purpose

machine to solve differential equations numerically. The goal is a

high-speed high-accuracy system that will be compact, adaptable, and,

above all, easy to use. Although the proposed system has not yet been

constructed as hardware, it has been simulated on the Stanford Computa-

tion Center IBM 360 Model 67.

A new machine structure, the digital incremental computer (DIC),

based on a modular concept, is proposed. Each module is a separately

self-contained device that can operate independently or connected to

other modules on one or several problems simultaneously. Its structure

is such that if the system is employed in conjunction with a general

3 SEL-71-057

-
■ -

yt< ■ :».'HLllM>!

purpose computer, it will not only be easy to use but in fact will

require substantial effort on the part of the programmer to avoid

using it. A software package, developed by B. Ptrasuraman (Schulz,

Parasuraman, 1971), will be employed in conjunction with the DIC to

accept the problem statement virtually in the form that differential

equations are normally written. Additional statements required are

the number of equations to be solved, a declaration of the dependent

and independent variables, and specification of the range and preci-

sion of the desired solution. The software package will generate the

program, load the system, and store the solution output for subsequent

use or for printout and display.

The system employs serial-parallel processing which, although

slower than total parallel processing, does not allow the iteration

time to exceed the time required to process all integrals in one mod-

ule. The solution time of equation? that do not require all available

modules can be decreased by distributing the various integral functions

over several modules. Serial-parallel processing also allows total com-

munication within the modules and restrictive communication between mod-

ules without the necessity of resorting to patch boards or extensive

time or space multiplexing. Here, 'total communication" means that any

integral output can be used as the dependent variable input, or as a

component thereof, to any or all integrals; this output also can be

used as the independent variable input to any two integrals.

Other innovations are the two-loop number system and simultaneous

integration and multiplication. It is shown that the two-loop number

system eliminates instabilities and oscillations encountered when em-

ploying a circular number system. Increasing the size of the two loops

while maintaining the total number-range constant results in number sys-

tems containing a hysteresis.

Simultaneous integration and multiplication can decrease the total

solution time by one half. With the given number system, it is possible

to make a partial prediction of the outcome of the integration at the

beginning of each integrating cycle. This prediction is sufficient to

allow initiation of the multiplication process of the output by either

a constant or a function and to complete the multiplication before the

integral output is generated.

SEL-71-057 4

■

A simplified method is developed that allows floating-point arith-

metic yet requires the storing and recalculating of only a single expo-

nent for each integral. Furthermore, this floating-point method does

permit simultaneous integration and post-multiplication.

D. Approach

Chapter II deals with the principles of numerical solutions and,

in particular, centers on solutions using digital differential analyz-

ers. This and the consideration of the basic DDA construction parame-

ters introduce the proper background for subsequent chapters.

Chapter III describes the concept of the proposed machine. The

design goal is outlined, and the necessary requirements to meet this

goal are established. In Chapter IV several number systems are inves-

tigated. The two-loop number system is introduced, and an extension of

this system leads to a system of overlapping loops. The logical imple-

mentation is presented for both the circular and two-loop number systems,

as well as for a multi-bit transfer two-loop system.

Chapter V considers the conceptual functional block. Several inno-

vations such as pre- and post-multiplication are incorporated into the

basic block, and simultaneous integration and post-multiplication are

introduced. It is shown that the outcome of the integral function in

single-bit transfer machines can be predicted. In addition, a floating-

point arithmetic method is introduced, which requires the storage of only

a single exponent for the total functional block,

The multi-module system with serial-parallel processing is presented

in Chapter VI. Two basic approaches, "horizontal communication" and

"vertical communication," are considered for inter-module communication.

Chapter VII discusses the module; processing, intra-module communi-

cation methods, and the memory organization are examined. Chapter VIII

outlines the proposed machine. Operating procedures, communication meth-

ods within and between modules, and the externally generated function in-

puts are explained. An example illustrates the programming. Chapter IX

summarizes the work and presents conclusions and suggestions for further

s tudy.

5 SEL-71-057

Chapter II

PRINCIPLES OF DIGITAL DIFFERENTIAL ANALYZERS

A. Principles of Numerical Solution

To solve numerically for the integral of a function f(x), the

function is replaced by a formula that approximates f(x) over a small

interval of the independent variable x, and the result is integrated

over that interval. The equations employed usually require knowledge

of the previous values of the integral, the function, and some of its

derivatives. The newly calculated value of the integral then can be

used as a factor to compute other functions and to repeat the above

process. When the integral has been formed over the interval for which

the quadrature formula is valid, that formula must be updated by obtain-

ing new values for the function and its derivatives. These methods are

well described in the literature (Scarborough, 1966; Cunningham, 1958).

In incremental integration, we do not obtain the whole integral

but only the change of the integral during the subinterval. This change

then is transmitted to be used as a factor to calculate other functions,

or it can be accumulated to yield the whole integral value.

The most commonly used incremental integrating algorithms are rec-

tangular and modified trapezoidal.

1. Rectangular Integration

If, in the Taylor series

(x1+1) = f(Xi) + f'(x^ £gt± + -T £"(xt) AxJ

gy f "»(Xj) A)cJ + ... (2.1)

we drop all \ rms on the right-hand side that contain powers of £x

greater than ie, we have

f(xi+1) = f(xt) + f ,(xi) Z»ti

Preceding page blank

— . —-

where

df(x.)
f'(x.) = . *

l dx

Ax. = x. - x .
l l i-1

Equation (2.2) represents rectangular integration of f*(x)

with respect to x. Figure 1 is the graphical representation of this

process. The Tea that is

bounded by the curve y, the

abscissa, and the ordinates at

the end points of the desired

finite interval (x ,x) is
o n

divided into small rectangles

of height yi
If

and width

n is made to be
*i-

Ax0

Fig. 1. RECTANGUIAR INTEGRATION,

integral of y with respect to x

i+1 i
very large, which is equivalent

to making Ax very small, and

if the function y is well be-

haved, the sum of these rectan-

gles is an approximation to the

over the specified interval:

£im } Y.AX. = / n y dx
1-400 i=o 1 -0

(2.3)

If the integral / n ydx = Z, then the individual Y ^ are the in-

crements AZ of the integral, and AZ = Y.AX .

The digital differential analyzer (DDA) is a device that im-

plements this incremental integration. Figure 2 illustrates the basic

construction of a DDA, which requires two registers and two arithmetic

units, and Fig. 3 is its schematic symbol. The inputs to the DDA are

the dependent and independent variable increments AY and AX, re-

spectively. In the following, all variables are normalized to unity.

SEL-71-057 8

INPUT

Fig. 2. DIGITAL INTEGRATOR FOR RECTANGULAR INTEGRA-
TION.

AX-

AY- >

AZsY-AX Fig. 3. DIGITAL
INTEGRATOR SYMBOL.

I

The value of AX is restricted to +1, -1, and 0. The accumulation of

the AY increments is stored in the Y register and Y is added to

the content of the R register if AX is positive and subtracted if

it is negative. The process then is described by

Yi = X ard
+ Yo

j=l J

(2.4)

and

.1=1 J J
(2.5)

where Y arid R are the initial values of the integrand and integral,
o o

respectively. These equations can be rewritten as difference equations:

Yi = Yi-1 + *i
(2.6)

SEL-71-057

i m —«'

F

and

R. = R. - + Y.AX, (2,7)
l l-l i i

where R. is a whole word and is the summation of Y with respect to

X, If we consider the maxi^ ,m allowable absolute value of R to be N,

then, whenever [R. j exceeds N, an overflow or underflow occurs which

represents the output AZ of the DDA. An accumulation of all AZ in

some other register will again be equal to the summation of Y.AX. with

the remainder R. in the R register:

R. = R. .. + Y.AX. -NAZ. (2.8a)
l l-i li i

i

t. = 7 Y.AX, - / N
1 f-i J .1 f-L

R. = 7 Y.AX, - 7 NAZ. (2.8b)

2. Modified Trapezoidal Integration

The approximation of the integral can be improved by using

trapezoids or some other geometrical areas instead of the elementary

rectangle. The jiost frequently used higher order integrating rule is

the modified trapezoidal algorithm; this is an extrapolating algorithm

rather than interpolating and is physically realizable for a fast sys-

tem whereas the interpolating system is not (Yu, 1968). In extrapolat-

ing trapezoidal integration, we make a correction to the calculated in-

crement of the integral based on the value of the function derivative

during the previous interval. The equations for modified trapezoidal

integration are

Y = Y + AY1 (2.9)

and

Ri = Ri-1 + Yi^i + I AYi^i (2.10)

SEL-71-057 10

Because the inherent delays in serial processing systems are

less than those in parallel systems, the modified trapezoidal integra-

tion rule is not a proper algorithm for serial machines. The Rieman

integrating rule should be used (Monroe, 1962) for these systems.

B. PDA Solution of Differential Equations

A single DDA solves the differential equation dz = ydx. To solve

more complex equations, several integrators must be interconnected such

that the resulting circuit models the equation. The basic programming

techniques are similar to those used for analog computers (Sizer, 1968;

Forbes, 1956) and are well known. The equation to be solved is rewrit-

ten in differential form with the highest order derivative on the left-

hand side and all other terms on the right-hand side. Using the highest

order differential term as the dependent-variable increment input, it is

integrated with respect to the independent variable. With successive

integration, all derivatives of the function can be found, and the terms

on the right-hand side of the equation can be generated. The sum of

these terms is equal to the highest order differential and the loop is

closed. [Other approaches may result in a simpler program for certain

problems (Yu, 1968)]. Some examples will be instructive and will serve

as a comparison to the program and hardware requirement for the proposed

system.

C. Examples

1. Example 1

We will consider the programming of Van der Pol's equation

d2v ,., 2, dv
—-5(1 -v) -+ v =0
dt

(2.11)

with the initial conditions v =1.5 and v =0. The maximum v^lue o o
of v and v will be less than 2 if t, is near unity. Multiplying

11 SEL-71-057

this equation by dt and moving all terms but the highest order term

to the right-hand side yields

dv = |dv - |v dv vdt (2.12)

where dv = vdt. Letting dv be the dependent-variable input to the

first integrator and dt its independent-variable input, the output

becomes vdt = dv. Integrating dv with respect to t results in

vdt as the output of integrator 2. With the two terms dv and vdt,

we can now generate dv ai>d close the loop as shown in Fig. 4.

©
>

<D

d«-

dv
vdt

©
. wdw

®x

■/©
v2dv

Fig. 4. SOLUTION DIAGRAM FOR VAN DER POL'S EQUATION.

The program connection is now determined. To complete the

program, we must still scale all variables; several methods are possible.

One approach is to solve a set of algebraic equations for each integrator.

A single integrator is illustrated in Fig. 5, with the scaling quantities

M, N, X, Y, and Z. If the maximum value
M

JL >

y + N'M
of the integrand is y

m
then 2M>y . — m

The number of bits used in the integrand

Fig. 5. DIGITAL INTEGRATOR
SYMBOL WITH SCALING PARAM-
ETERS .

register is N; X, Y, and Z are the
X exponents of 2 such that there are 2

Y Z
2 , and 2 increments for each unit of

the independent-variable input, dependent-variable input, and integral

output, respectively. The integrator is scaled correctly if

SEL-71-057 12

Y + N = M (2.13)

and

X + M = Z (2.14)

-

All scale factors in the above example are shown in Table 1. In this

case, the maximum number of bits was taken to be 16. Note that the

independent-variable input for integrator 2 has a scale factor differ-

ent from that of integrator 1. This situation usually arises if the

Table 1

d^v 2 dv
SCALING FOR —- -(l-v)~+v = 0

dt2 dt

Integrator
(No.)

Function

(y) m
M N X V Z

1 V 2 1 14 -16 -13 -15

2 V 1.5 1 16 -14 -15 -13

3 i 1 2 16 -15 -13

4 V 1.5 1 16 -15 -15 -14

5 V 1.5 1 16 -14 -15 -13

6 -£ -1 0 16 -13 -13

original equation is airgnitude and frequency scaled i.i a fashion similar

to equations being programmed for analog computers. Unless automatic

scaling is available, this method is very often the easiest and simplest

because it eliminates the need to solve the several sets of algebraic

equations (Peterson, 1968). If the machine does not allow t:»e use of

different machine times, the X input for integrator 2 may be gener-

ated by an additional integrator with a constant multiplication factor

and M = 2.

2. Example 2

A second example is the equation of a circle:

13 SEL-71-057

yy + y + 1 = o (2.15)

Assume that we want to solve this equation for values of x from x=0

to x = 2.1; then, y = 1, y = 2, y = 2.236, and y =2.
o o max max

Figure 6 is the connection diagram, and the scaling factors are given

in Table 2 (again for a maximum of 16 bits).

dx-

dy

d*-

31
d*-

© ̂ _-J

JÜ. _©Hh

l/y ®;
, dfl/y)

l/y ©
-d*

y

®)
-iU

3-
Fig. 6. SOLUTION DIAGRAM FOR yjT + y + 1 = 0.

SEL-71-057 14

'-'

Table 2

SCALING FOR y
dx ($

+ 1=0

Integrator
(No.)

Function

(y)
M N X Y Z

1 y 1 14 -15 -13 -14

2 i/y 0 14 -14 -14 -14

3 Vy 0 14 -14 -14 -14

4 i/y 2 16 -15 -14 -13

5 y 1 14 -14 -13 -13

6 y 2 16 -15 -14 -13

D. Construction Parameters

DDAs can be classified by three basic construction parameters

(Wood, 1965):

(1) parallel/serial—input-output

(2) parallel/serial—arithmetic

(3) parallel/serial—processing of integrators

Although they do influence system performance, parameters (1) and (2)

chiefly represent possible trade-offs between solution speed and hard-

ware on a fixed-ratio basis. For example, if it takes EL clock pulses

to process an integrator with parallel arithmetic and it takes K_ clock

pulses to process one integrator of the same bit length with serial arith-

metic, then for a given machine (serial or parallel) the solution time us-

ing serial arithmetic will be K_/K- multiplied by the solution time us-

ing parallel arithmetic regardless of the equation being solved. The

third parameter, however, represents trade-offs of variable ratios be-

tween solution speed and hardware complexity. Parallel processing re-

sults in the highest possible solution speed, and the iteration rate for

a given word length is constant regardless of the equation being solved.

15 SEL-71-057

Mmrnxsmmm

i'w ■■ ü'I ii*l|üP'ii»wi^i>MM"ii i^inwMi^wwiummmiwiiiini mm^wimf ■

A machine that has a fixed number of integrators can solve any problem

as long as the availability of integrators is not exhausted. For a

practically sized machine, this might constitute a severe limitation

on the type of problems that can be solved.

Programs for parallel-processing machines must of necessity be

hard wired and the machine, therefore, cannot use stored programs.

The usual programming method in this case is either permanently wiring

for a machine that solves only one problem with different equation pa-

rameters (or initial conditions) or plug-board programming as used on

analog computers.

Plug-board programming requires an excessive amount of time compared

to the solution time. Although this may be acceptable, if the particular

program is a standard program to be used many times, this method is not

feasible in a situation where the machine is to be employed by many users

with different problems. In addition, wiring errors may easily occur,

especially in problems requiring a high wiring density.

The solution time for serial processing DDAs varies directly with

the complexity of the problem because only one integrator is processed

at any one time. This, however, considerably simplifies the problem of

programming. Only one pair of input variables and one output variable

must be generated or transmitted with stored programs. Limitations on

size or complexity of problems that can be solved on a particular machine

are, in this case, set by the size of the available program storage. The

machine requires only a single processor.

When programming any DDA, the programmer must be able to manipulate

the differential equation to be solved in such a way that he can set up

a solution diagram. This often requires recognition of functions as so-

lutions to differential equations which, in turn, are necessary for the

overall solution of the given problem. This requirement on the program-

mer in itself restricts the practical use of DDA machines to a relatively

small number of users. One of the most important considerations in this

work, therefore, has been to develop a machine environment that would

eliminate the most difficult and time-consuming programming tasks.

SEL-71-057 16

" ~** ***■■:'' •*.'.~r#.vm*. ICT«»»»»^»>^l*««g«i.UW^

Chapter III

CONCEPT OF THE PROPOSED MACHINE

A. Requirements

The objective of this work was to develop a machine that would

satisfy the following goals. (1) It is to operate in the environment

of a computer center mated to either a small or large computer. (2)

It must be capable of operating with user-generated programs that spec-

ify little more than the equation to be solved, the dependent and inde-

pendent variables, and the accuracy and range of the solution desired.

The mapping of the equation and the generation of the machine program,

therefore, must be accomplished automatically. (3) In addition to act-

ing as an external device to a general-purpose computer (GPC), it must

be able to operate independently in the environment of control systems;

this is important because many control systems are complex enough to

require the solution of differential equations but do not warrant the

expenditure of a large high-speed general-purpose computer.

The basic requirements selected were

(1) high accurecy

(2) high operating speed

(3) ease of programming

(4) solution repeatability

(5) solution reversibility

(6) modularity

(7) expandability

(8) adaptability

Their import in configuring the DIC is discussed in the following sec-

tions.

B. Accuracy and Solution Speed

With incremental computation, the largest errors encountered are

the result of quantization and truncation. Typically, the worst possi-

ble error should not exceed 2~n if n is the length of a whole word

in number of bits (Mayorov, 1964). In rectangular integration, the er-

ror e for a monotonic continuous curve is given by e < (y - y) AX

17 SEL-71-057

^*»y '»nni>.gFg'Ujy

(Braun, 1963). The precision of the computation varies divectly with

the length of the word and, unlike general-purpose computers with bit-

parallel word serial processing, the solution speed is inversely propor-

tional to the word length and therefore to precision. Basically, preci-

sion can be increased without limit by using longer words at the expense

of more time, or solution speed can be increased by sacrificing precision.

Both alternatives are attractive and their advantages can be selectively

exploited, depending on the application.

As noted in Chapter II, the accuracy of calculations can be improved

by using higner order integrating algorithms such as extrapolating trape-

zoidal integration. Another method is to employ multi-bit increment

transfers to reduce the errors introduced by truncation of the integral

increment. Nllsen (1968) has shovn that multi-bit increment transfers

permit the use of shorter word lengths and resultant savings in solution

time without the normally associated penalty of loss of accuracy. His

method, however, does introduce the restriction that integration can be

accomplished only with respect to time. Other problems associated with

multi-bit transfer are discussed in Chapter IV.

In addition, accuracy can be improved by the use of floating-point

arithmetic. Although this improvement is less than that achieved by

multi-bit transfer, floating-point arithmetic does have the additional

benefit of considerably reducing and possibly eliminating the often very

difficult problem of scaling.

High operating speed can be achieved by total parallel processing;

the result, however, would be incompatible with requirement 3. Serial-

processing machines operate at high solution speeds for simple equations

(equations whose solution requires only a few integrations per iteration)

but, as the complexity of the equation increases, the solution time in-

creases proportionately without bound. One solution to this dilemma is

a machine that employs serial-parallel processing.

C. Ease of Programming

The usefulness of any device is directly related to the ease of use

by the programmer. By incorporating provisions that allow for automatic

SEL-71-057 18

editing and programming wherever possible, the proposed system can be

employed without any extra effort when attached to a GPC; in fact, given

a DIC/GPC system with a built-in translator program and given a problem

that contains differential equations, it would require considerably more

effort on the part of the programmer to avoid using the DIC.

The automatic-editing capability is one of the key features neces-

sary for successful operation of the system in the computer-center en-

vironment.

D. Solution Repeatability

Repeatability of operations or calculations is necessary to ensure

accuracy; furthermore, it allows for some fault detection. Because the

operating parameters and the initial conditions stored in the DIC are

not modified or destroyed during processing, it is always possible to

stop at any point and repeat the solution from its initial value.

In control-system applications, a given equation oft^n must be

solved repetitively with only a few changes in parameters, and only these

initial conditions or parameters must be entered while all others are

retained. A similar situation occurs when searching for the solution

of problems with given initial and terminal boundaries, where some ini-

tial conditions must be changed until the proper solution is found.

E. Solution Reversibility

The DIC is capable of reversing the direction of computation; there-

fore, we can stop the solution at some point, reverse, and retrace it to

its initial value. Given the function value at some point in time t.,

we can compute the solution by using a negative time derivative and find

the solution for the interval from t to t where i < j.

It should be noted, however, that not all solutions are reversible.

The conditions of reversibility for the solution of linear difference

equations with constant coefficients are that the highest and lowest

ordered difference terms of the functions must have coefficients of

unity (Monroe, 1962).

19 SEL-71-057

■ . ^T%aiW^>:~''^^»^*i'U^^

""Ill I IT HIT' I 1 ■171' l|| ■ | »nil i,|- |f in > IHWIWIIIWlUUpii

F. Modularity and Expandability

The size of the DIC sets a limit on the complexity of problems that

can be solved. This complexity varies with the order, degree, and the

number of equations. The question then is how small the machine can be

without severely restricting its usefulness. In addition, to retain

high speeds, we wanted to avoid continuously increasing solution time

with increasing complexity of the equations to be solved. The answer

proved to be a modular system with serial-parallel processing. Each

small module is large enough only to solve a reasonable range of prob-

lems; for more complex problems, it is only necessary to add additional

modules. The required connection between modules is minimal and, if not

used by another module, each module can operate independently on differ-

ent problems. The result is a modular system that can be closely matched

to the needs of the user.

G. Adaptability

It is important that the system be adaptable. The design is such

that with a proper I/O buffer the DIC can be connected to almost every

existing GPC because the actual operation of the DIC is independent from

the GPC; the general-purpose computer is used only to translate the equa-

tion to be solved into a machine program and as an I/O device for the DIC.

In this configuration, the length of time required for the programming

and execution of problems containing differential equations can be re-

duced considerably. The efficiency of the total computing system is

greatly increased because the DIC can solve the differential equations

much faster than the GPC and, as a result, the GPC is free to execute

other portions of the program simultaneously. As noted above, the DIC

can operate totally independently, which is particularly useful in con-

trol systems and circuit applications. The DIC can realize filters, ex-

tract Fourier coefficients from some signal, or monitor and control pro-

cesses (Yu, 1967; Raimondi, 1971). In these applications, the program

is usually used repetitively and can be entered or changed manually.

SEL-71-057 20

Chapter IV

NUMBER REPRESENTATION

A. Binary Number System

Of the ma.iy possible number systems, the binary number system using

2's complement arithmetic is the most logical choice not only for the DIC

operation but to ensure compatability with other computing systems. Be-

cause the basic-unity increments represent the smallest possible change

of a word (a binary number), the value of the increment is limited to 0,

+1, or -1. If a single bit is used to represent these increments, then

a "1" represents +1, a "0" represents -1, and an alternating string of

"l" and "0" represents 0. Generally, this method is called "binary com-

munication of increments"and was introduced with the design of the MADDIDA.

To avoid the problem of "zero oscillations," ternary representation

of increments can be employed. Here we use two bits, usually one sign-

bit and one magnitude-bit, allowing the representation of the three de-

sired states (0, +1, -1) and leaving one unused state (-0).

B. Circular Number System

Binary numbers and 2's complement arithmetic leads to a circular

number system (Braun, 1963; Mayorov, 1964). If we start with some number

and continuously add positive increments, it will eventually reach the

positive maximum; with the next positive increment, the number will go

to the minimum value. The reverse process occurs if we have negative

increments. For example, if the range of a number is -N to N-l, then

when increasing we would have 0, 1, 2, ..., (N-l), -N, -(N-l), ...,-2,

-1, 0,...; decreasing, we find the same series but in the reverse order.

This can be illustrated by considering a simple example of a binary

number register restricted to three bits. Starting from zero, we add a

single bit it a time to obtain a series of eight states, as shown in Ta-

ble 3. The retractive decimal values are tabulated in the tiird column.

If we consider the highest order bit to be the sign-bit of a 2's comple-

ment representation, then the decimal values of the binary numbers appear

in the fourth column and we obtain (0 1 1) + (0 0 1) = (1 0 0) which,

21 SEL-71-057

MOmftMlCNVfc»-- ■ ■ '■..<.'.■■:■-'■ ■--.:•;■'■■. .--.-. .-

Table 3

BINARY REPRESENTATION OF NUMBERS

State
Binary Decimal Decimal Value for 2's
Numbers Value Complement Representation

a 0 0 0 0 0
b 0 0 1 1 i !
c 0 10 2 2
d Oil 3 3
e 10 0 4 -4 |
f 10 1 5 -3
g 110 6 -2
h 111 7 -1

in decimals, is (+3) + (+1) = (-4). A state diagram for this table

would show eight states connected in a ring such that there is a path

from every state to both of its nearest neighbors. One can see that

using 2's complement representation and allowing overflows will result

in a circular number system.

Figure 7 is a graphical representation of the circular number sys-

tem. Increasing numbers move counter-clockwise on the circle; decreas-

ing (positive or negative) numbers move clockwise. An overflow occurs

whenever point S is crossed in

M.+M-l the counter-clockwise direction

ar:d the value of the number goes

from M-l to -M; an underflow

occurs whenever S is crossed in

the clockwise direction and the

number value goes from -M to

M-l. The negative portion of the

circle is larger by one unit incre-

ment because, for some n-bit number,

M-l corresponds to 2
,n

1 and -M

corresponds to -2

This circular number system

produces generally accurate results

It can result in masked instabil!-

Fig. 7. CIRCULAR NUMBER SYSTEM.

if taken over a long period of time.

ties, however, if the increment of a number is zero averaged over a period

SEL-71-057 22

..,.-•*■• . - •:•. -

of time (but not instantaneously) and if the value of the number is at

or near either the positive or negative limit.

C. Two-Loop Number System

The remainder of this chapter deals with a solution to this diffi-

culty. Let the states in Table 3 be rotated such that the column begins

with state e and ends with state d. We break the ring by not allow-

ing any transition to go from e to d or from d to e; instead,

let the (+1) transition from d go to a and the (-1) transition from

e go to h. The result represents a two-loop number system, with the

two loops joined by transitions between states a and h.

If the range of a number is -N to N-l, for example, and if the

number continuously increases starting with some negative value -k, we

obtain the series -k, (-k + 1), ...,-1, 0, +1, +2 (N-l), 0, +1, +2, ...,

and so on. A continuously decreasing number starting with yome positive

value k results in a similar series: -fk, k-1, ..., +2, +1, 0, -1, -2, ...,

(-N+1), (-N), -1, -2... .

Using binary numbers with 2's complement representation, we have

one more negative state than positive states for any given number of

bits. If the word length is n bits (plus sign-bit), therefore, the

maximum value is (2 -1) and the minimum value (negative) is -2 .

The loop interval, however, must be the same for the positive and nega-

tive loops. As shown in Fig. 8, the return in the positive loop is to

zero and the return in the negative loop is to -1. This results in a

one-unit increment separation of the two loops but ensures equal loop

intervals. It is also possible to consider the 2's complement repre-

sentation of (-2) to represent, instead, the negative equivalent of

+2n-l

Fig. 8. TWO-LOOP NUMBER SYSTEM.

23 SEL-71-057

..^t^-^.^^.^—-..^^... —-.— r —.. ,. 1|M[|-n

zero (-0); in the negative loop, we would have (2 -1) steps going

from -0 to -(2 -1) instead of going from -1 to -2 .

This two-loop number system eliminates any instabilities or oscil-

lations such as those that occur in the circular number system because

the return after an overflow or underflow is to a value other than the

minimum or maximum. Table 4 compares the behavior of the two systems

for a series of increments of the dependent variable which in two places

contains an "average zero derivative." Figures 9 and 10 illustrate the

staircase approximations of this function, emphasizing the difference

between the circular and two-loop number systems. The respective
i

f(n). = .£„ AZ. are plotted. As can be seen from both the table and

Fig. 10, the "zero oscillations" of the circular number system are not

predictable.

Since the weight of the increment AZ is determined by the loop

length, it is clear that, given the same number of bits for both sys-

tems, the weight of AZ in the two-ioop system will be 1/2 the weight

in the circular number system and AZ will occur on the average at

twice the rate of that in the circular system.

D. Overlapping Loops

The two number systems described can be considered to be two ex-

tremes. An interesting variation occurs if we extend the two loops

such that they overlap but are not identical, as shown in Fig. 11. As

an example, let the positive loop return to -3 and the negative loop

return to +2. Continuously positive increments would result in the

following series:

-n, -n + 1, ..., -3, -2, -1, 0, +1, +2, +3, ..., n-1, -3, -2, -1, 0, +1, ...

and negative increments would generate

n-1, n-2, ..., +3, +2, +1, 0, -1, -2, ..., -n + 1, -n, +2, +1, 0, -1, ...

The second column in Table 5 tabulates the behavior of this number

system for the same series of increments used in Table 4 and can be

SEL-71-057 24

, .. , -■.,.,.-.- ,.■■■■■■ ■ ~--~

—

Table 4

GENERATION OF INCREMENTS FOR CIRCULAR AND TWO-LOOP NUMBER SYSTEMS

Circular Number System Two-Loop Number System
Arbitrary

Input
(n) (n)

(An) Remainder Increment Remainder Increment
(=AZ) (=AZ)

0 0 0 0 0 0 0 0 0
+1 0 0 1 0 0 0 1 0
+2 Oil 0 Oil 0
+2 10 1 +1 0 0 1 +1
+2 111 0 Oil 0
+2 0 0 1 0 0 0 1 +1
+2 Oil 0 Oil 0
+1 10 0 +1 0 0 0 +1
-1 Oil -1 111 0
+1 10 0 +1 0 0 0 0
-1 Oil -1 111 0
+1 10 0 +1 0 0 0 0
+3 111 0 Oil 0
+2 0 0 1 0 0 0 1 +1
+1 0 10 0 0 10 0
-1 0 0 1 0 0 0 1 0
+1 0 10 0 0 10 0
-1 0 0 1 0 0 0 1 0
+1 0 10 0 0 10 0
+1 Oil 0 Oil 0
+1 10 0 +1 0 0 0 +1
+1 10 1 0 0 0 1 0
-2 Oil -1 111 0
-2 0 0 1 0 10 1 0
-2 111 0 111 -1
-2 10 1 0 10 1 0
-1 10 0 0 10 0 0
-1 Oil -1 111 -1
-1 0 10 0 110 0
+1 Oil 0 111 0
-1 0 10 0 110 0
+1 Oil 0 111 0
-1 0 10 0 110 0
-1 0 0 1 0 10 1 0

fwi'Atfj

25 SEL-71-057

MäBpmcMMm

8 12 16 20 24 28 t 8 12 16 20 24 28 t

Fig. 9. INCREMENTAL INTEGRA-
TION, USING CIRCULAR NUMBER
SYSTEM.

Fig. 10. INCREMENTAL INTEGRA-
TION, USING TWO-LOOP NUMBER
SYSTEM.

!
1 1

-n -o-l n-l

Fig. 11. TWO-LOOP NUMBER SYSTEM WITH OVERLAPPING LOOP.

SEL-71-057 26

■v:.^o;--:v*vY';'-.;-^
BSMUMUIlMGMMtWMK

-**&#*.■

Table 5

GENERATION OF INCREMENTS FOR SYSTEMS WITH OVERLAPPING LOOPS

i

Arbitrary 1-Bit Hysteresis 2-Bit Hysteresis
Input
im R AZ R AZ

0 0 0 0 0 0 0 0 0
+1 0 0 1 0 0 1
+2 Oil Oil
+2 110 +1 111 +1
+2 0 0 0 0 0 1
+2 0 10 Oil
+2 10 1 +1 111 +1
+1 110 0 0 0
-1 10 1 111
+1 110 0 0 0
-1 10 1 111
+1 110 0 0 0
+3 0 0 1 Oil
+2 Oil 111 +1
+1 10 1 +1 0 0 0
-1 10 0 111
+1 10 1 0 0 0
-1 10 0 111
+1 10 1 0 0 0
+1 110 0 0 1
+1 111 0 10
+1 0 0 0 Oil
-2 110 0 0 1
-2 10 0 111
-2 0 10 -1 10 1
-2 0 0 0 0 0 1 -1
-1 111 0 0 0
-1 110 111
-1 10 1 110

+3 011- +3 0 11-1
+2 0 1 0-1- +2 0 10
+1 0 0 1 +1 001-

0 0 0 0 0 0 0 0
-1 111 -1 111
-2 110 -2 110-J
-3 10 1^ -3 10 1
-4 100- -4 1 0 0 —

27 SEL-71-057

:■:- ■<■**■■ ■■ -

"^^^^m^^em/m

compared to the behaviors of those systems. Figure 12 illustrates the

staircase approximation for the same function, using the number system

with a slight hysteresis of one-bit. "Hysteresis" here means that the

loops are not separated by one or more bits and that the returns from

the maximum and minimum are to two different values. The third column

in Table 5 lists the same function, using a number system with a two-bit

hysteresis: its staircase approximation is shown in Fig. 13. Although

these systems do not eliminate all instabilities, they do prevent oscil-

lations in the case of very small function changes at or near the maxi-

mum or minimum level. Input sequences that conceivably could cause in-

stabilities are not likely to be encountered.

16 20 24 28 t 0 4 8 12 16 20 24 28 t

Fig. 12. INCREMENTAL INTEGRA-
TION, USING A NUMBER SYSTEM
WITH 1-BIT HYSTERESIS.

Fig. 13. INCREMENTAL INTEGRA-
TION, USING A NUMBER SYSTEM
WITH 2-BIT HYSTERESIS.

SEL-71-057 28

TT

E. Logical Implementation

1. Circular Number System

The logical implementation of the circular number system re-

quires only 2's complement arithmetic and normal overflow detection.

This means that an increment is generated whenever there is a carry-bit

(or borrow when subtracting) into but not out of the most significant

bit (the sign-bit) or when there is a carr -bit out of but not into the

most significant bit. The sign of the increment is always equal to the

sign of the number before addition or subtraction. The implementation

of the two-loop system varies slightly.

2. Two-Loop Number System

Let R, Y, and R* be the sign-bits of the previous remain-

der, the integrand, rind the new remainder, respectively, using 2's com-

plement representation ("O" = positive, "1" = negative). Here, C is

the carry into the sign-bit when adding or the borrow when subtracting;

S is the add/subtract control bit and is "1" for addition and "0" for

subtraction. We then want R* and JAZ| as a function of R, Y, and

S. The function F is necessary to eliminate C.

From the map of R* and AZ (Fig. 14a), we can derive the

equation

R* = RY'S' + RYS + RY'C'S + R'YC'S + R'Y'CS' + RYCS' (4.1a)

or

R* = |[(R © Y 0 S)R]' [(R © Y © C)(R © Y © S)']'}' (4.1b)

If F is the output of a full adder/subtracter on R, Y, C, and S,

we see from the map of F (Fig. 14b) that

F = R* if AZ = 0 (4.2a)

and

F jt R* if [AZJ = 1

In the latter case F = R'.

29

(4.2b)

SEL-71-057

 ■■-■- *--:-^-^--A-^^»rt»J^ Tumi' I -y [jjmi-p

M)»l'.''JM'm—WW" 11 mm mw» 9EMHMMHMMMI

sc

00

01

11

10

00

RY

01 11

R*. AZ

10

0,0 0,+l 0,0 i.o

1,0 0,0 1,0 1,-1

0,+l 0,0 1,0 0,0

0,0 1,0 1,-1 1,0

RY

00 01 11 10

sc

00

01

11

10

——— ■

0 1 0 1

1 0 1 0

1 0 1 0

0 1 0 1

(a) (b)

SC

00

01

11

10

RY

00 01 11 10

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 o

R © Y © S

(c)

Fig. 14. KARNAUGH MAPS FOR
INTEGRAL OVERFLOW GENERA-
TION.

The function R©Y© S (Fig. 14c) covers all the cases where

F £ R*; therefore, R* can be expressed as

R* = F(R © Y © S)' + (R © Y © S) R (4.3)

Similarly from the maps,

|AZ| = R'Y'SC+ R'YS'C + RYSC ' + RY'S'C = (R © Y © S)(Y © C) (4.4)

but

SEL-71-057

Y © C = F © R

30

(4.5)

because

F = R © Y © C (4.6)

Therefore,

AZ = (R© Y © S)(F © R) (4.7)

Again from the maps,

JAZ | = (R © Y © S) (F © R) = R* © F (4.8)

This can be checked quickly by manipulation of R*©F:

R* © F = [(R © Y © S)R + (R © Y © S) 'F] © F

= (R©Y©F)RF' + [(R© Y © S)R]* [(R © Y © S) 'F] 'F

= (R © Y © S)RF* + (R © Y © S)R'F (4.9a)

R* © F = (R © Y © S) (F © R) (4.9b)

The sign of AZ must always be equal to the sign of R. The AZ gen-

eration of the two-loop system then is identical to that of the circular

number system, but the sign-bit of R is inhibited from changing when-

ever |AZ| =1.

3. Multi-Bit Transfer Two-Loop Number System

The above equations were based on unity-increment transfers,

which means that AZ can only be 0, +1, or -1. To allow the increment

of AZ to take on values such that (-n) < AZ < (+n), the AZ genera-

tion must be changed from detecting single-bit overflows or underflows

to multi-bit detection. Clearly, we could duplicate the logic described

for single-bit detection and use this same logic for every AZ bit. For

small n, this may not be too costly but, as n increases, this approach

31 1EL-71-057

iiiimiMi—a«d

would become uneconomical; furthermore, each detection stage introduces

some additional delay that must finally propagate up to the highest or-

der bit.

Proper multi-bit over- or underflow detection for the two-loop

number system can be accomplished by using the previously described logic

inserted between the most significant bit of R and its sign-bit in the

same manner as in the unity-increment case. Let that portion of R which

is to be read out as AZ be AZ*, as shown in Fig. 15.

0E-
TECTOR At

LEAST
SIGNIFICANT

B'T

Fig. 15. INCREMENT DETECTION FOR MULTI-BIT TRANSFER TWO-LOOP SYSTEM.

All the previous equations hold, with the exception of the

equations for |AZ|, and their terms refer to the same variables as

before. Again,

R* = |[(R © Y © S)R]' [(R © Y©C)(R© Y© S)']'}* (4.10)

and

R*© F = (R © Y © S)(F © R) (4.11)

however, here R* © F does not give the magnitude of AZ but rather

serves to indicate whether |AZ| is at its maximum. If AZ is the 1 ' m
most significant magnitude bit of AZ, then

AZ = R • (R*© F)'
m

(4.12a)

or

AZ = R[(Y © S) + F]
m

(4.12b)

SEL-71-057 32

Therefore, if K*©F = 0, we can determine AZ by taking the sign-

bit of R, copying this bit twice as the sign and highest order bits

of AZ, and reading out the remaining AZ* bits. All AZ* bits must

then be reset to be equal to the sign-bit of AZ. For example, let the

R register contain

Sign AZ*
r 1
0 10

R-AZ*

10 110

and let AZ* contain three bits; then, if the least significant bit of

R is on the right, the left-most bit is the sign-bit of R, the next

three bits are AZ*, and the remaining bits are R - AZ*. If R* ® F = 0,

then

AZ = 0 0 0 10

and the new value for the R register is

000 10110

For an example with negative R, let R be

101 10101

If R* + F = 0, then

AZ = 1 1 10 1

and the new R is given by

R=l 111 10101...

If R* © F = 1, we have a carry (or borrow) into the sign-bit which,

however, is inhibited from changing. This means that AZ car. now be

determined by again taking the sign of R as the sign of AZ, copying

33 SEL-71-057

.: as .: r. ■ 'rfr iii m-"r« 'i«wf T" j, ai'n nnJ wriaMnnritinnn >rJiT!raiMliWiiiiaB»«BWi»^i<«»TWMirw

the inverse sign of R into the most significant bit of AZ, and read-

ing out the remaining AZ* bits. Again, all AZ* bits should be reset

to be equal to the sign-bit of AZ.

In the case where R* © F = 1, however, it should be noted

that all bits in the AZ* register will always be equal to the sign of

AZ and therefore need no resetting because the AZ* register is always

reset after readout, and the maximum value that can be added to a AZ*

register of n bits (excluding the sign-bit) is (2-1) plus a carry

(or borrow) from the lower order bits of K. As a result, because AZ

is a word that is longer by one-bit than AZ*, the maximum value achieved

by a AZ of n bits (plus sign-bit) is 2 and the minimum value is

-2n-1-l.

SEL-71-057 34

.. ■.'«w; i Ulliri I'll' illHliHMIiill>HHH»illlii«m«l*i|iil IMWH IH^IipHi ii*iWMlll|MliWW<l1iHWM|HMiili *'\W" "JIM* '^'rTiSaOKBlDlBÜt

rvmgMrmmiaii «www HH>nmSKIl!^S!fSri9^

Chapter V

THE FUNCTIONAL BLOCK

Conceptually, the basic DIC module is made up of a number of iden-

tical functional blocks, each containing

(1) memory locations for tne integrand, integral, and the
dependent-and independent-variable increments

(2) an arithmetic unit (processor) which, when given the
integrand increments and independent-variable incre-*
ments as inputs, will produce the integral increments
and remainder

Each block (Fig. 16) receives four inputs AV., AX , A, and B

and generates as its output

&W. « A B ViAXi (5.1)

where V is the dependent variable

being integrated with respect to X.

The processor contains the functions

of integrand-increment and integral-

increment multiplications by A end

B, respectively.

Aw *ABvAX

Fig. 16. FUNCTIONAL BLOCK OF
PROPOSED MACHINE.

A. The Integrating Function

Figure 17 is a flow diagram of the functional block. We shall

first consider the integration without multiplications by A or B.

Ax

1

I A
Ay|

V
Av r

i
&£

L
Aw

rig. 17. STRUCTURE OF FUNCTIONAL BLOCK.

35 SEL-71-057

■.-.■■

The flow diagram of this sub-block is that portion of Fig. 17 which ih

enclosed by the dotted line. The inputs are AX and AY and the out-

put is AZ = Y AX. The equations describing the operation of the sub-

block are

1 O /w- ,?*" j I (5.2a)

Y. = Y + AY.
l l-l l

(5.2b)

and

l l-l i l i
(5.3)

AZ.
Y.AX. + R, „ - R.
l l i-1 l

(5.4)

Explicitly,

AZ. = (R. , + Y.AX. > M) - (R. „ + Y.AX.<-M)
l l-l l l — i-1 l l

(5.5)

and

Z. = I / AZ. 1 M + R. 1 l-l l}
(5.6)

Substituting for AZ.,

(5.7a)

or

5. = I 7 Y.AXj + R 1 Viti J J/ °
(5.7b)

SEL-71-057 36

which is approximately

■■' ff
y dx + R (5.7c)

In these equations, M is the capacity of the integrand and re-

mainder words and is 2 , where n is the number of bits not including

the sign-bit. Equations (5.3) to (5.5) implement the two-loop number

system. Equation (5.3) can be rewritten as

Ei = Ri-1 + V^i " SigD (Ri-l) M (5.8)

since the sign of AZ. is always equal to the sign of R , as shown

in Eq. (5.5), and the magnitude of AZ is equal to 1 or 0. The effect

is that if R is in the neighborhood of but less than H and the Y.AX.

are positive, then R will reach (M-l) and with the next unit incre-

ment will go to zero instead of to the most negative value (-M). A sim-

ilar but reverse process occurs if R and the Y AX are negative. In

this case R will eventually reach -M and with the next increment will

go to -1. Thus we have two separate loops, the positive going from 0 to

M-l and the negative going from -1 to -M.

B. Constant Multiplication

Now let us consider the total functional block. Even linear differ-

ential equations with constant coefficients require thav some terms be

multiplied by constants. In addition, a method of problem scaling relies

on constant multiplication of the integrand and the integral increments.

The functional block therefore contains both of these multiplications.

Multiplication by A will be called "pre-multiplication" since it

occurs before integration; similarly, multiplication by B will be

called "post-multiplication" because it is an operation on the integral

result. Pre-multiplication is limited to positive constants (A) which
a

are positive integer powers of 2 (A = 2 , a = positive integer); post-

multiplication is limited to positive or negative constants (B) whose

37 SEL-71-057

■ ■ ■.- . ..,,-. '■ '-'""^••:T^"~'fi--imr,ri1MtT«^

absolute value is equal to or less than 1 (-1 < B < +1). I'sing the

multiplication factors A and B simultaneously allows the integral

to be multiplied by any desired constant; for example, the multiplica-

tion factor of -3 is derived by setting A = 4 and B = -3/4.

The limitations set on A and B are dictated by the operating

principle of the DIC. Considering post-multiplication first, it is

clear that the integral increment is generated at some rate determined

by both the dependent and independent variables and that this rate can-

not exceed the maximum machine rate which is equal to the maximum num-

ber of iterations/sec. The highest possible rate occurs when the inde-

pendent-variable increment has a rate jqual to the maximum machine rate

and when the absolute value of the corresponding dependent variable is

at a maximum. Under these conditions, the integral-increment rate is

approximately equal to the maximum machine rate. Any rate multiplica-

tion, therefore, must be limited to factors whose absolute values are

equal to or less than 1.

Similar arguments apply to pre-multiplication. Given an integrand

word with maximum length of n bits, the highest precision is achieved

by setting the unit increment equal to 1/(2 -1) of the maximum possi-

ble integrand value. The unit increment is de: ined to be the smallest

allowable increment of a variable or function. If in some calculation

we desire naximum accuracy and if the dependent-variable increment con-

sists of a single-unit increment, then it is not possible to multiply

this increment by any factor less than 1. The restriction of the factor

A to powers of 2 is a practical consideration and simplifies the logical

implementation. Since the pre-multiplying factor appears mathematically

outside the integral, it is not necessary to include sign reversal if

that is available in post-multiplication.

If, in some calculation, precision is to be sacrificed for speed,

the maximum length of the integrand words may be scaled down by uniformly

pre-multiplying the integrand increments of all integrands by the same

factor. This new factor then is considered to be the unity multiplica-

superimposed. In th:e case, the factor A may be less than 1 (A = 2 ,

tion factor and any further multiplication necessary for the function is

superimposed. In th:s= case, the factoi

a = 0, ±1, ±2 ...) but still positive.

SEL-71-057 38

/

C. Implementation

The implementations of pre- and post-multiplication are quite dif-

ferent ■'"-•om each other. In pre-multiplication, the value of the incom-

ing increment is multiplied by the multiplication factor and the result

is immediately added to the integrand (pre-multiplication is the normal

multiplication of two numbers). For post-multiplication, this method

is only possible and necessary for multi-bit transfer machines. If we

want the output to be a single magnitude bit which limits it to the val-

ues of +1, -1, or 0, then some form of rate multiplication is required.

We could use a second identical functional block, set the value of the

integrand to be equal to the desired post-multiplication factor, and use

the output of the first block as the independent-variable increment in-

put. The dependent-variable increment would remain zero. This, in fact,

is the method normally used in DDA machines.

In a parallel-processing machine the use of integrators for constant

multiplication becomes rather expensive and the availability of integra-

tors is quickly exhausted. In a serial-processing machine this method

causes the solution speed to decrease considerably, since in this case

the time required for constant multiplication is equal to that required

for integration.

Incorporating post-multiplication into the basic functional block

somewhat reduces the extra hardware required otherwise, and also decreases

the total time spent on multiplication. Both time and hardware can be

saved, for example, by eliminating the circuit function which for the in-

tegration function adds the dependent-variable increment to the integrand.

Including the two multiplication functions in the functional block

results in the equations below describing its operation. In these equa-

tions, M and M2 are the scale factors, R and R2 are the remain-

ders of the integrating function and post multiplication, respectively,

and AV and AW are problem variables and are the dependent-variable

increment and the multiplied integral increment.

A V, = A V
i o

A AV, (5.9)

39 SEL-71-057

■

/

Y =AV = A V. , + A ^
i l l-l l

(5.10)

R. = R. ., + Y.AX - M AZ.
l l-l l 1 l

(5.11)

R2. = R2J , + B AZ. - M2 AW.
l i-1 l l

(5.12)

AZ. =
l

A V.AX. + R. « - R.
l l l-l l

M
(5.13)

AW. =
l

B AZ. + R2 , - R2
l r^l l

M2
(5.14)

This equation is implemented thus:

AW = (R2 , + B AZ > M2) - (R2. , + B AZ. < -M2)
i l-l i — l-l l

(5.15)

The algorithm then yields

W = M
l

J=l
AW I M2 + R2.

3 1 i
+ R. (5.16)

Substituting for AW. we have

W. = M
l

^- B AZ + R2 - R2.

* 1 —1^ I + R2i + Rj (5.17a)

W = M
l

/ (B AZ. + R2 . , R2.) + R2.
3 j-1 J 1

+ R, (5.17b)

or

W = M
i

/ B AZ. + R2
t-U .1 o
J=l

+ R. (5.17c)

SEL-71-057 40

Substituting for AZ. results in

W.
A V.AX, + R ,

H
+ R2 + R. (5.18a)

or

\=B1 A V.ÄX. + R -R +MR2 +R J j o l o i
(5.18b)

i
which finally can be written as

W =AB
l

l

X V.AX. + R + M R2
o o

(5.19)

In the preceding sections all numbers were considered to be integers.

It is customary, however, to normalize all values such that the maximum

absolute value of the integrand may not exceed unity. In this case, M = l

and the smallest possible increment of Y is AY = 1/2 , where n is

again the number of bits excluding the sign-bit. It is clear, however,

that the largest positive and negative values which may be contained in

Y are (1-1/2) and (-1), respectively. It is therefore not possi-

ble to multiply by +1 without some modification. A simple method to

allow multiplication by +1 is to include an additional bit in the post-

multiplier representing unity. This is not a problem in the case where

separate integrators are used for constant multiplication because the

second integrator in that case is deleted.

Using normalized values, the equations of the functional block are

Y = A Vi_1 + A AVt (5.20)

Ri = Ri-1 + V*i AZ, (5.21)

41 SEL-71-057

... - as ■>■ -■

R2. = R2. , + B AZ - AW
l 7.-1 1 1

(5.22)

Z. = A
l

7 V.AX. + R (5.23)

W. = A B
l

i

/ V.AX. + R + R2
o o

(5.24)

D. Post-Multiplication by a Variable

Let us again consider the basic functional block with inputs AY,AX

and output AZ = Y AX and let us assume that the equation solution re-

quires the generation of g dz s G AZ = AW. Taking a separate integra-

tor, we may obtain the increments AW by using AZ as the independent-

variable increment and AG as the dependent-variable increment, thus

giving AW = G AZ = G Y AX. The same result may be achieved by using a

built-in post-multiplier; however, the required input would be G and

not AG which means that G must have been generated elsewhere in the

problem solution. In problems requiring function multiplications, the

capability of built-in post-multiplication by a function can save con-

siderable time and hardware. A few simple examples will demonstrate

potential time savings. The functional block symbol (Fig. 18) of the

proposed machine has one extra output A Y AX which will be discussed

later.

AX-

Av- ZL-AV- F= -AVAX -ABvAx Fig. 18. FUNCTIONAL
BLOCK SYMBOL.

Example 1.

Inversion: Given dy, generate 1/y. Figure 19a is the conven-

tional DDA diagram, and Fig. 19b is the diagram using built-in post-

multiplication. The inverse is generated by solving

SEL-71-057 42

■...-.■. fi .■ ■■■■.?,^s^»itiJJtut»MVj-.-*E«<vM« <■ J«BlWIMai*Wil>MWtW»«WM»«.«IWi y.».»WKHi

® ■ -(?)' dy (5.25)

dy

l/y > '/» >-,
-!/» dy*d(l/y)

a. Conventional DDA solution

Solution,using
built-in post-
multiplication

i/y *H d(i/y)

Fig. 19. GENERATION OF 1/y.

Example 2.

Generate the functions sin use and cos wx by solving the differ-

ential equation

Then

2 2 2
d y = -uj y(dx)

2 2 2
d (sin Wx) = -ü) sin wx(dx)

(5.26)

(5.27)

and

d(sin wx) = tu cos Wx dx (5.28)

Figure 20a is the solution diagram in which both sin Wx and cos Wx

are available as «hole words and in incremental form. Figure 20b is an

alternate diagram which uses one less integrator but generates w cos wx

in place of cos Wx. Figure 20c is the diagram for built-in post-multi-

plication where both the desired functions are available and the circuit

uses only two integrators.
43 S2L-71-057

UW1.--'!J».H<J"»*U°>W>-'«'1J'JJ1^ -JBM

dx-

dx

cos <"x J w / I 1 sin wx / -a> / |

a. Conventional DDA solution

dx-

w cos u« j\ sin m / -w2 /[
-w2 sin wx dx j

b. An alternate solution

dm

dx-

C
cos u> 3~~i— Sin ui Bh

c. Solution, using built-in post-
multiplication

Fig. 20. GENERATION OF sin Wx AND cos Wx.

Example 3.

2 2 1/2
Given dx and the constant a, generate the increments d(x +a)

2 2 -1/2 2 2
and d(x +a) . Figure 21a is the DDA diagram where d £n(x +a)

is generated in addition to the desired outputs. Figure 21b illustrates

the use of built-in multipliers. An alternate diagram (Fig. 21c) has
2 2 ° 2 —1/2

d in(x +a) and d (x~ + a) as outputs. The square root is derived

from

dv = f dx
2y

(5.29)

SEL-71-057 44

n/im-jtf«&m,m*zmMmkMWtmm&0&Hm9!a>M

mmmnß!Hfffl*r

and the natural logarithm is from

d in y = - dy (5.30)

The inverse is derived as in example 1 from

,2

*(f) ■ -C-) •>

dx-

iWll'
da- „ /•■*« —yZ

dU2*«2)"2

lA^r^A
Z d In (x2+o2)

r i|2t92)"/2/
rl/2

a. Conventional DDA solution

dx

dx •1/2
>

X
d(f,/2»

r ■1/2 ^-1«
f-./2,

f«(x2+02)

b. Solution,using built-in post-multiplication

dx-

dx-
df

•1/2 -1/2 3>
din T

r -1/2 5-i
f«(x2+o2)

c. Alternate solution, using built-in post-
multiplication

2 2 1/2 2 2 -1/2 2 2
Fig. 21. GENERATION OF d(x +a) , d(x +a) , AND d«n(x + a),

45 SEL-71-057

s«w»«i*#«^o«=«r »e WHmvtw

E. Simultaneous Integration and Post-Multiplication

As has been shown, some time saving may be gained by including

post-multiplication in the functional block. The greatest advantage

of built-in post-multiplication, however, is that for single-bit (plus

sign-bit) communication it is possible to perform post-multiplication

simultaneously with the integration. At the beginning of any Integrat-

ing cycle the following values are known: AY., Y. , R , AX,, and

the post-multiplication factor B. Given these known quantities it is

possible to make some prediction about the outcome of the integrating

cycle.

To proceed with the multiplication, we must know the sign and the

magnitude of

Y AX + R - R.
AZ. = —— ~ - (5.31)

1 M

Again using normalization to unity, we know that the magnitude of AZ.

can only be zero or unity. The sign of AZ. may be determined as fol-

lows. The absolute value of Y AX must be less than or equal to M:
i i

the same is true for R and R „ . If we assume that R „ has some
i i-1 l-l

positive value M-C and if

Y. = M - D (5.32)
l

then

R. - AZ = (M - C) + (M - D) (5.33)

for positive Y.AX , where 0 < C < M and 0 < D < M. Therefore,

R - AZ. = 2M - (C + D) > 0 (5.34)
l i —

which requires that AZ. > 0. For negative Y AX , we have

R -AZ = (M - C) - (M - D) = D - C < M (5.35)
i l —

SFL-71-057 46

., /

.;■-......-.. ,

«g^twawieafliBgews1^'

and

C > -M

which requires that AZ =0. If R is negative, the results are

AZ < 0 for negative Y AX (5.36a)

AZ1 = 0 for positive Y AX
l i

(5.36b)

Hence, the outcome of the integrating cycle can be partially predicted

by the knowledge of R only.

We may proceed, therefore, with the process of post-multiplication

simultaneously with the integrating cycle. The result of the post-mul-

tiplication is then stored and used if |AZ, f = 1 and is discarded oth-

erwise. The additional time required for post-multiplication is only

one gate delay and becomes essentially insignificant in comparison to

the integrating cycle time. The process is valid for both multiplica-

tion by a constant as well as a variable.

If we now consider the linear differential equation

dy + ady + bdy + cydt = F cos ut dt (5.37)

we car see that four integral outputs require multiplication by constants

but are also used without the multiplication as inputs to other blocks.

If the output of a functional block must be multiplied by a constant or

a function, that multiplication may occur within the block only if the

integral output (unwultiplied) is not used. Generally, if each func-

tional block has only one output and if each output is used as the inde-

pendent-variable increment input to c second block and not used elsewhere,

the two functional blocks may be combined into one provided that the de-

pendent variable of the second functional block is already being generated

in some other block or that it is a constant. If we allow the functional

block to have two outputs (the integral and the post-multiplied integral)

as was shown in Fig. 18, then the only restriction for simultaneous

47 SEL-71-057

<■■>■■» ■■-■&*»»smwmmw*Biqi)iB»

t^.~^:a s-y=r^i»^»<»qW»aWWaBnw«aiiOT^^^ miiL nmm

post-multiplication is that the multiplier must be generated elsewhere

or must be constant.

F. Extemlod Simultaneous Integration and Post-Multiplication

Theoretically, it is possible to extend the above method to allow

the multiplication of the integral increment by many functions simulta-

neously. For example, the three integrators in Fig. 21a which contain
-1/2 2 2 -1/2

the dependent variable f = (x +a) " could be included in a

single functional block; although all dependent variables are identical

except for one sign reversal, they could be different as long as they

are available or are constants.
■

Simultaneous post-multiplication is meaningful only in serial-pro-

cessing machines. Let us consider such a machine with an extended mul-

tiplication capability which can handle p post-multipliers. Given a

differential equation and its solution diagram, all integral;* are first

grouped into two categories.

(1) The independent-variable inpui to the integral is the
independent variable of the total equation, or the
dependent-variable input is a function not generated
elsewhere.

(2) The independent-variable input is the output of some
other integrator, and the dependent variable is con-
stant or is generated by one of the integrators in
the first category.

If there are n integrators in category 1 and m integrators in cate-

gory 2, the solution would require n + m machine cycles her iteration

for a traditional serial machine. The solution would require n cycles

in the machine with extended post-multiplication provided that tho num-

ber of multipliers assigned to any one of the n integrators in category

1 does not exceed p.

Although the additional time required for multiplication in the ex-

tended unit is "animal, extra time is necessary for assigning and routing

the additional outputs of each unit; furthermore, if the multipliers are

variables, some time must be expended to fetch the variables. As pointed

SEL-71-057 48

out previously, usually all integrals of category 1 require one multi-

plication, the probability of encountering two or more function multi-

plications is considerably reduced, and it would be unlikely that all

the variables would be generated elsewhere. Therefore, while a single

simultaneous multiplication can reduce the iteration time by 1/2, it is

not economical to include the extend i post-multiplication (by two or

more functions) capability.

G. Multi-Bit Transfer

Simultaneous multiplication as described is not possible if a sys-

tem of multi-bit increment communication is used because the magnitude

of the output cannot be predicted. Furthermore, it is not even possible

to predict the sign of the output. Again, the known quantities at the

beginning of the integral cycle are B, ■•» Y_i» AY. and AX* • Here>

however, the aligned (after scaling) maximum values of R and Y are

not equal. If HL, is the maximum value of Y and M is the maximum

value of R, then

\<S (5.38)

where VL = HL, is the case of single-bit magnitude communication and

can here be ignored. If

Ri-1 = \ ~ C (5.39)

and

\ - MY " D (5.40)

then, for positive R and positive Y & ,

R. - AZ. = (MR - C) + (My - D) (5.41a)

R - AZ = M + My - (C + D) > 0 (5.41b)

49 SEL-71-057

because

0 < C < M
- - R

0 < D < M
(5.42)

As a result, AZ. > 0 but the magnitude of AZ. is unknown. For nega-

tive Y.AX.,
l l

R± - AZ = (M - C) - (M - D) (5.43a)

R. - AZ.
l l

MR- C + D (5.43b)

But M > M ; therefore,

MR " MY < ° (5.44)

D may be, but is not necessarily, greater than C.

If C > D,

R. - AZ. < 0 and AZ, < 0
x i i —

(5.45)

If C < D, nothing at all can be said about the sign of R. -AZ ; it

may be positive or negative. Similar results are obtained for negative

R. . It is no. possible, therefore, to have simultaneous multiplica-

tion if multi-bit communication is used.

Floating-point arithmetic combined with floating-point single-bit

magnitude communication can be handled identically to fixed-point single-

bit communication with respect to post-multiplication. The only other

requirement is the addition of the integral output exponent to the expo-

nent of the multiplier. Both of these exponents are known at the begin-

ning of the integral cycle since the exponent of AZ must always be

equal to that of the integrand Y,

SEL-71-057 50

H. Floating-Point Arithmetic

DDAs conventionally use fixed-point arithmetic, with all quant'1 es

scaled such that their absolute value does not exceed unity. One excep-

tion is the BFPDDA (binary floating-point digital differential analyzer)

designed by J. L. Elshoff and P. T. Hulina (1970), which uses floating-

point unnormalized values throughout. This requires that at least three

exponents must be used for each integral: one for the integrand Y, one

for the independent variable AX, and one for the integral increment

output AZ and its remainder R. The advantage is that problems may

be entered without normalizavion; the disadvantage is that several ex-

ponents must be recalculated during every iteration for each integral.

This is costly in time and hardware. The following proposed alternative,

while maintaining the most important features of floating-point arithme-

tic (such as dynamic scaling and increased computing accuracies due to

reduced delays), uses a single exponent for all quantities in any one

integral by employing normalized values of the independent variable.

The system is best explained by beginning with a conventional fixed-

point DDA integrator. The absolute values of the integrand Y and the

remainder R are less than or equal to unity. The normalized indepen-

dent-variable input AX and the normalized output AZ are ±1 or 0,

and the dependent-variable input AY has a magnitude of less than 1.

Let us now assume that R and Y are divided by 2, which is equivalent

to a right shift by one bit. To maintain the balance, the AY inputs

must be divided by 2 rnd :he value of AZ must be multiplied by 2.

Nothing however changes for the independent-variable input. If we use

exponents of 2 to indicate the number of right shifts, then the original
1

value of Y = .y.,y2y„ becomes Y = 'Sy^y^yo *2 » where S is the in-

serted bit which is equal to the sign-bit of Y. Because AY and R

are shifted simultaneously and by the same number of bits as Y, their

exponents are identiral to the exponent of Y and may be deleted. The

output AZ is generated in the same way as before, and the required

multiplication can be achieved by merely appending the exponent of Y.

Thus only a singlf exponent storage and a single exponent calculation

are required for the basic integrating cycle.

51 SEL-71-057

■

It was previously assumed that the incoming AY increment had

tJie same exponent as Y. This Is true if we begin with a completely

scaled problem setup. Once any one of the integrands is shifted,

however, the assumption no longer holds. Because several integral

outputs may be summed to constitute a AY, it is necessary to equal-

ize all of their exponents to be that of Y which, of course, is

also true for the BFPDDA. If the inputs rather than the outputs are

stored, only one sucli output will arrive at any one time; therefore,

each increment of AY may be scaled as it arrives and the stored AY

will always have the proper exponent. Using the stored input method

does, however, create one problem. Each output can be used as the

input to many other blocks and, therefore, is to be stored simultane-

ously in the AY storage of any or all functional blocks. This re-

quires that the exponents of all AY (which are the exponents of all

integrands) must be available at the end of each processing cycle.

This implies that, to save storage space, the exponents of each block

should be stored in their respective AY storage rather than with

the integrand.

I. Floating Point Post-Multiplication

A problem arises when the floating-point output of one integral

is used as the independent variable of another. If the exponent asso-

ciated with the independent-variable increment is greater than zero,

multiple integrating cycles are required; if the exponent is less than

zero, fractional cycles are necessary. Most systems, including the

machine here proposed, however, allow only one cycle per iteration.

Let us first consider floating point post-multiplication. As all

other quantities in the system, the multiplier is a floating-point

number such that the absolute value of the mantissa is less than unity.

The integral increment, however, is a floating-point number with a man-

tissa of absolute value unity or zero, where the sign of the mantissa

is predictable, as described for the fixed-point system. Multiplica-

tion of two floating-point numbers is achieved by multiplying the man-

tissas, adding the two exponents, and rescaling the result into standard

SEL-71-057 52

. ■■

form. In our case, however, the result does not need to be rescaled

because the exponent is adjusted after transmission of the result to

the appropriate storage locations. Multiplication of the integral

output mantissa may therefore occur simultaneously with the integrat-

ing cycle and, because both exponents are known at the beginning of the

integrating cycle, post-multiplication in a floating-point system nay

be simultaneous.

As shown in Section D, whenever an integral output is used as the

independent-variable input, the resultant function can be considered as

a post-multiplication. In these cases, the integrating cycle is iden-

tical to the one described above except that the output exponent is tne

sum of the dependent- and independent-variable increment input exponents.

No storage is necessary for the independent-variable input exponent be-

cause it is retransmitted for every iteration.

53 SEL-71-057

/

' - ■ imwiajwwaabtwwgwaiwaw»''»

Chapter VI

THE MULTI-MODULE SYSTEM

A. Processing Methods

Assuming that we have a differential equation requiring m separate

integral calculations per iteration, we can visualize the equation as m

points in a two-dimensional space, each representing one integral func-

tion. To solve the equation, the m points must be interconnected ac-

cording to the solution diagram.

Now, any DDA machine can be represented pictorially as a matrix of

n points, each representing one integrator and each having two inputs

and one output. If we assume full parallel operation, where all n

points have their own processor, then, after each processing cycle, up
2

to n signals must be routed to a maximum of n +2n destination points.

This is based on the assumption that each integral output can be used as

the independent variable of two other integrals and as a component of the

dependent-variable input of all integrals including itself. This is not

a practical scheme for any method other than patchboard programming. The

complete parallel machine, therefore, is not suitable under the conditions

described in Chapter III.

Let us now examine tae other extreme and assume that a single proces-

sor is available. This processor then operates ?i each integral in some

predetermined order and, after each processing cycle, one signal must be

routed to as many as n+2 points. The required interconnection becomes

simple enough to be handled automatically with a reasonable amount of

hardware. As n becomes large, however, the iteration and solution

times increase proportionally to n. This does not satisfy the condi-

tion of high solution speed discussed in Chapter II and, therefore, is

not suitable.

Between these two extremes is the alternate method of serial-paral-

lel processing. If we consider the matrix of n points to be divided

into ifl smaller submatrices of 2 points each and if we have m pro-

c3ssors (one for each £ point matrix), then we have serial processing

within each submatrix but we may process all submatrices in parallel with

each other. The iteration time woi-ld increase as the number of required

Preceding page blank 55 SEL-71-057

iiLfÜÜMWKij|

integrals increases but could not exceed & integrating cycles. Within

each submatrix, one signal must be capable of being routed to as many as

(Ü+2) inputs after each integrating cycle. The serial-parallel process-

ing approach, therefore, simplifies the interconnection problem within

each modulo by limiting the number of signals to be routed at any one

time to one signal and by limiting the number of destinations to which

this signal is to be routed to (i+2). This approach, however, does

introduce the problem of interconnection between matrices.

B. Inter-Module Communication Methods

Here again the practical solution is a compromise between the two

extremes of total interconnectibility, where every point of every matrix

can be connected to all other points of all other matrices £tnd where no

interconnection exists between the matrices. The first becomes impracti-

cal because of the very large expense in hardware and time. The second

extreme is unacceptable because it breaks the system into separate ma-

chines that cannot communicate with each other and therefore restricts

the complexity of problems that can be solved to l\ "complexity" refers

here to the number of integrals required for the equation solution, which

depends jointly o.i the order and degree of the equation. The alternative

is to introduce restrictions and limitations that will simplify the hard-

ware requirements and still allow a reasonable rnd sufficient level of

interconnections between matrices. Two possible basic approaches are

"vertical communication" and "horizontal communication."

1. Vertical-Communication Approach

For vertical communication, all matrices are stacked such that,

if all points in each matrix are labeled 1 through £, each point i (1<

i < I) in every matrix is directly below and above the points i in the

vertically adjacent matrices. Assuming total communication within each

plane, we now allow each point i to communicate with the points i di-

rectly above and below. This communication scheme in itself is too re-

strictive to be useful: however, by using communication channeling, any

point can communicate with any other point in any plane. "Communication

SEL-71-0Ö7 56

channeling" here means the duplication at some point in the plane of a

function being generated at another point such that the output can be

communicated to the required destination point.

Figure 22 is a» example of communication channeling in the

vertical-communication scheme. For point A to communicate with point

B, we require the duplication of A at A2, It is important to note

that this communication channel is unidirectional. Vertical communica-

tion may be advantageous for some problems (such as weather-prediction

calculations) but, in most cases, will lead to an excessive amount of

function duplications and hardware.

Fig. 22. CHANNEL-
ING IN VERTICAL
COMMUNICATION.

Z. Horizontal-Communication Approach

For horizontal communication, all matrices are arranged in a

row. Each matrix contains two sets of points (set A and set B) such

that each point in set A (of matrix n) can communicate with every

point in set B contained in the matrix (n~l), and all points in set

B of matrix n can communicate with every point in set A of matrix

(n + 1), as indicated in Fig. 23. The necessary hardware requirements

for this inter-kuatrix communication scheme depends directly on the num-

ber of points contained in sets A and B. As the size of the sets A

and B is reduced, however, there will be points within each matrix

which are not contained in either set and, therefore, cannot communi-

cate directly with points in other matrices. Communication channeling

57 SEL-71-057

n-l

£) Q-Q 0.--Q fr-
n + l

Fig. 23. HORIZONTAL COMMUNICATION.

is required in any case to allow all points to communicate with each

other unless sets A and B in each matrix are identical and all points

within the matrices are contained in the sets. Figure 24 is an example

of the upe of channeling to permit communication between points C and

D in two adjacent matrices. Again there is a duplication at point C2

of the function generated at C.

Fig. 24. CHANNELING IN HORIZONTAL
COMMUNICATION.

SEL-71-057 58

Chapter VII

THE MODULE

A. Processing Methods

The proposed machine will be a modular system. Each module is to

be complete and capable of operating independently or in conjunction

with other modules. Each must contain all the necessary memory for

program and data storage for some fixed number of different Integrals,

as well as the required arithmetic capability. The module must be au-

tomatically programmable, and it must be capable of repetitive opera-

tion and solution reversal (if the function is reversible).

The above conditions influence the selection of the construction

parameters. The two most important of these are the method of process-

ing (serial or parallel) and the method of intra-module increment com-

munication.

The methods of parallel and serial processing have been described

in the previous chapter in the context of interconnectibility. It was

shown to be advantageous to use parallel processing between the modules

but to use serial processing within each module. The principal disad-

vantage of serial processing is that the iteration time increases as

the complexity of the problem increases; the principal disadvantage of

parallel processing is that the difficulty of integrator interconnec-

tion prevents any practical automatic programming. The primary advan-

tages of serial processing within the module are economy of hardware

and interconnectibility. The serial-processing module requires only a

single arithmetic processor. The number cf integrals that can be solved

within the module is limited only by the availability of memory space

for program and data storage. Because only one integral is processed

at a time, a single set of inputs and outputs must be routed between

the integrating cycles. This, in contrast to parallel processing, al-

lows for completely automatic programming.

59 SEL-71-057

-
..

Fun ' ■ i IM iiii^mwmiin.imiuip i"L'i.www.i

B. Intra-Module Communication Methods

The DDA program is a digital model of the system under study. With

few exceptions, therefore, the programs are closed-loop systems with all

functions generated internally, and all inputs to the integrators are

derived from the outputs of other integrators. The exceptions, of course,

are those instances when the machine is used for real-time applications;

in these cases, one or more externally generated functions are entered

as integrator inputs. To communicate the various outputs to the desired

inputs, it is necessary to employ at least temporary storage for the sig-

nals. We may choose to store the outputs and then, at the beginning of

each integrating cycle, to fetch the various required outputs which may

combine to form the dependent-variable input and, unless machine time is

used, to fetch the output that is used as the independent-variable input.

Alternately, we may choose to transmit each output as it becomes avail-

able ant', continuously update and store all the input functions. Th; -.e

two methods are called "output storage" and "input storage," respectively.

1. Function Output Storage

Function output storage requires a minimum of memory. Each

functional block has two inputs; one is the dependent-variable input and

is generated by combining several outputs and therefore requires full-

word storage in contrast to the single-bit plus sign-bit that is neces-

sary for the storage of the output. At the beginning of each integrating

cycle, assuming that all outputs are stored, one output is fetched to be

used as the independent-variable input unless the machine time is used.

All outputs necessary for the dependent-variable input are then fetched

and the input is formed in some arithmetic unit. Although its operation

is always a summing of the various outputs, the arithmetic unit must con-

sist of a network of adders such that all outputs can be summed simulta-

neously, or a considerable amount of time must be allocated to generate

this input. Assuming simultaneous summing, all the required outputs

must be available simultaneously. This can be achieved by using a se-

lection matrix, but again this requires a considerable amount of hard-

ware. The program storage necessary for the selection codes is n-(n+

log n) bits, where n is the number of functional blocks in the module.

SEL-71-057 60

SB»

•VÄ*^^.^-^ r-r- > »>mii i nuiiin c _

2. Function Input Storage

Function input storage requires memory space for two inputs

for each functional block; as stated above, one of these is a full word.

At the beginning of the integrating cycle, both inputs are immediately

available; at the conclusion of the cycle, the output is routed to the

appropriate independent-variable &torage locations. The output also is

routed to be used to update all appropriate dependent-variable inputs.

One method is to employ a separate counter for each of these inputs; the

output then updates the counters by either adding or subtracting one unit

increment. The contents of the counters therefore are the dependent-

variable inputs and are always current. An alternative method would be

to employ a single adder and to fetch and update all selected inputs se-

quentially. Although the first method requires considerably more hard-

ware, it is preferred because the second method requires too much time.

Using counters simplifies the selection network by allowing count-enable

lines to be directly tied to the proper section of the program word. In

this case, the program storage necessary for the selection codes is n«(n+

2 log n) bits, where n again is the number of functional blocks within

the module.

Input storage, unlike output storage, allows easy expansion of

the module to a larger number of functional blocks with the increase In

hardware being directly proportional to the number of added blocks.

C. Memory Organization

If we assume that for each integral (and integral remainder word

stored) we hr.ve one corresponding integrand word, then, because each

cycle occurs in the same time interval during each iteration, it is

possible to organize the data-memory block as a push-down stack. This

considerably reduces the memory necessary for program storage by elimi-

nating the address portion from each program word. This trade-off, how-

ever, may lead to duplication and multiple s+' of the same identical

integrand word.

A similar situation exists for the storage of post-muiiipl^cUicn

factors, but we have one additional consideration. Post-multiplication

61 SEL-71-057

■. ■>^^*~^;Wlä«*!^!l«EnÄiS^iB»9»^^«=^J<Sa^*«

by a constant B, as described earlier, is unlikely to result in much

duplication if the push-down stack organization is used. If, however,

we maintain random-access organization for both the integrands and the

post-multiplication factors, it is possible to expand the post-multipli-

cation concept to include function multiplication.

If we assume a module size which allows the generation of m inte-

grals, each with a different dependent and independent variable, then

that module can solve a linear constant-coefficient differential equa-

tion of order m. In the case where random-access organization is main-

tained for all data, the coefficients may be varying functions provided

that they have already been generated in the course of the equation solu-

tion. If any of the functions must be generated separately or if the

order of the equation exceeds m, two or more modules can be cascaded

for horizontal communication or they may be stacked for vertical commu-

nication to provide the increased capacity necessary for the solution.

The number of integrals required to solve nonlinear differential equa-

tions depends on *»»« order as well as the degree of nonlinearity, here

jointly referred t"> as the complexity of the equation.

SEL-71-057 62

•

Chapter VIII

THE PROPOSED MACHINE

A. Operating Procedure

The system here proposed consists of one or more identical modules

which are self-contained and may operate jointly on the same problem or

individually on separate problems, Figure 25 is a block diagram of one

module.

DATA
MEM. I

1
OATA
MEM.H

ARITHMETIC
UNIT

I/O CONTROL
ANO PROGRAM

SEQUENCING
LOGIC

1

CONTROL
SIGNALS OATA

MEM.JD

0Hk\
DATA

MEM. ff

PROGRAM
MEMORY

v/n i nvkLE n

Fig. 25. BLOCK DIAGRAM OF A MODULE.

The modules follow a cyclic operating procedure. During each iter-

ation, all integrals are processed sequentially for one integ^l incre-

ment. The order of processing is determined by the program and is repeated

63 SEL-71-057

-:■■ ■>--.- ■ MHMMU

for each iteration. The processing of a single integral increment is

called a cycle and, in this system, a cycle consists essentially of the

following operations:

(1) fetch the integrand increments

(2) pre-multiplication

(3) incrementation of the integrand

(4) fetch the independent variable increment

(5) generation of the integral increment and the new integral
remainder

(6) post-multiplication

(7) storage of the integral increment as dependent- and inde-
pendent-variable increments, as required

Figure 26 is a conceptual flow chart of the module operation. The

actual time sequence of operations does not always follow this pattern

because of the considerable amount of parallelism and overlapping of

functions. Post-multiplication, for example, is initiated at the same

time as pre-multiplication and is completed before the integral incre-

ment AZ is available. The result of post-multiplication then is held

until the AZ generation is completed, whereupon we either store or

discard the result depending on the magnitude of AZ.

B. Communication within the Module

ik The proposed machine will employ input variable storage. If AW

is the i increment output of the k integral function, then in

terms of problem variables each integral increment AW., can be useu

as tne dependent-variable increment AV. , where j = i + l if k > i

and j = i if k < £, for any or all integrands in the module includ-

ing the case where k = g,.

The increments AW can also be used as the independent-variable
ik

increment AX. for any two integrals (again j = i + l if k > j> and

j = i if k < i). Each dependent-variable increment AV . may be a

SEL-71-057 64

mm

ENTER PROGRAM

INITIALIZE VARIABLES

REAC PARAMETERS

SET ITERATION

1
SET CYCLE

FETCH OEP. ANO
INOEP. VARIABLE

INCREMENTS

I
PRE-MULTIPLICATION

I

POST-MULTIPLICATION

i

Fig. 26. FLOW CHART FOR MODULE OPERATION.

single AW. or may be formed by the summation of any or all AW .

Within each module, therefore, we allow total communication for the

dependent variable. The limitations on the independent variables are

not as severe as may appear. If some integral increment must be used

as the independent-variable increment of more than two integral func-

tions, one simply has to generate one integral twice. In addition, the

65 SEL-71-057

restriction can be relaxed or even be eliminated although this would

probably not be desirable. The dependent-variable increments are up-

dated for all integrals during every cycle, and the same is true for

the independent variable. Thus all inputs to any integral are ready

and immediately available at the initiation of any cycle.

The memory organization is such that random access is maintained

for both the integrands and post-multiplication factors. The machine,

therefore, is capable of simultaneous integration and multiplication

by either a constant or a variable.

C. Communication between Modules

If a multi-module system is required, inter-module communication

is achieved by the "horizontal communication" method. All uodules are

processed in parallel.

The required hardware connections between cascaded modules consist

of two sets of increment-corn lunication links between any two modules.

These links are unidirectional.

The communication between modules, while not as general and com-

plete as within each module, allows for any or all elements of the set

of the four integral increments AW. (i = m - 3, m - 2, m -1, m) of each

module n to be used as the dependent-variable increments for any or

all AV (i = 1, 2, 3, 4) or as components thereof, of each module n + 1.

Also, any or all elements of the set of the four integral increments

AW. (i = 1, 2, 3, 4) of each module n can be used as the dependent-

variable increments for any or all AV. (i = m - 3, m -■ 2, m - 1, m) or

as components thereof, of each module n-1.

A reasonable and convenient size for m is 16 which means that a

single module is capable of solving equations up to the 16th orde*\ pro-

vided that the coefficients are already generated in the problem solution

or that t.iey are constants. For many applications this should be more

than sufficient. If a greater capability is iesired, one has only to

cascade additional modules. In Fig. 27, each integral is represented

as a point in a 4x4 matrix and each square plane of 16 points repre-

sents a module. Any point enclosed by a solid line has total communica-

tion with all other points within that enclosure (within the module),

SEL-71-057 66

'•^H,!lfl«[',.-

MODULE n-H

| [MODULE n

MODULE n-l

Fig. 27. MATRIX SHOWING COMMUNICATION BETWEEN MODULES.

and any point enclosed by a broken line has total communication with

all other points within the broken-line enclosure (external to the

module).

Each enclosure then is a domain of total communication for each

point within it, and each point belongs to at least one but not more

than two domains. Two points which are not contained in the same do-

main cannot communicate directly. Indirect communication is achieved

by channeling. (For example, points A and D in Fig. 27 communicate

via points B and C, and points A and F communicate via points

B, C, and E.) Other communication schemes are possible and some mod-

ifications of the above are being considered; however, any method must

by necessity use some kind of channeling to keep the basic organization

simple.

If a particular integral output is to be used in an adjacent module,

the output increment is transmitted to that module immediately after gen-

eration and is held there temporarily until the next integrating cycle

has been initiated. During each integrating cycle, a time slot is re-

served to store the external inputs received during the previous cycle.

Because only one input can arrive during any one cycle, the routing of

that signal is simplified considerably; furthermore, the interleaving

of internal and external signal storage enables us to store the address

of the signal in the destination module rather than in the source module.

67 SEL-71-057

-!U*a**»«*Sii»"*tfWIO««»#»W««

This saves both hardware and time because the address does not need to

be transmitted along with the signal between modules.

D. External Function Input

To use the machine for real-time control, it is necessary to pro-

vide for real-time function inputs. The communication links available

to cascade modules to each other, if not required to connect to another

module, can be used to enter external functions. A module therefore is

capable of accepting up to eight external function inputs. As modules

are cascaded into larger systems, only the modules at either end of the

string can accept four external inputs each in this way. These external

inputs also are circuited to be used for specific integrals (cycle num-

bers) within the modules. Additionally required external functions must

use separate links going to those integrals only, which in Fig. 27 are

represented as points belonging to a single domain.

E. Iteration Time

Generally, as the complexity or the order of the equations increases,

the solution time increases proportionally, which is true in most numeri-

cal-solution methods. The solution time per iteration required for the

DIC increases linearly with increasing problem complexity until it equals

16 cycle times (for m = 16); thereafter, the iteration time stays con-

stant as additional integrations are performed simultaneously in adjacent

modules. Thus the solution time per iteration for the DIC cannot exceed

the time required to process 16 integrations, regardless of the problem

size.

Although once established, the order of processing remains the same

for every iteration; that order can be selected during program setup to

allow easy communication to other modules without much fur^tion duplica-

tion or to reduce the iteration time by distributing one problem over two

or more modules. In examples 1 and 2 in Chapter II, a total of six inte-

gral functions are required each if post-multiplication is not used; there-

fore, the iteration time is equal to six cycle times. We could, however,

SEL-71-057 68

KStfHMMMMBQMM ■MW

distribute the integral functions over the two modules n and n + 1

such that each module contains three function?. The iteration time in

this case would be equal to three cycle times or one-half of the time

required previously.

F. The Processor

The processor of the proposed machine is described by the equations

in chapter V, which were written for rectangular integration. However,

the processor contains one additional element which allows a choice of

several integrating algorithms. Equation (5.21),

Ri = Ri-i + YA - **i

determires the algorithm. This equation can be rewritten in more gen-

eral form as

A = R + IY + (K + 1) AYi 1 AJ^ - &t (8.1a)

Rt = R + YiAXi + K AY1AXjL - &i (8.1b)

where K is a constant which determines the algorithm being used.

Four simple and very easy-to-implement algorithms are obtained by

selecting K to be 0, +1/2, -1/2, or -1. If K = 0, we have the pre-

vious case of rectangular integration. Setting K = +1/2 results in

the modified trapezoidal integration rule which is an extrapolating al-

gorithm. In this case,

R = B, j + YjLAXi + | AYiAX1 - &± (8.2a)

or

\ - V! + (vi+1 AYi) *i - **i (8-2b)

69 SEL-71-057

The interpolating trapezoidal algorithm requires that K = -1/2. Then,

R. = R. , + Y.AX. - - AY.AX. - AZ. (8.3)
l 1-1 l l 2 l l l

The fourth algorithm allows the proper multiplication of two variables

if K is set to -1 in one of the cycles and to 0 for the other. Sum-

ming the two outputs and ignoring the remainders result in

A(X.Y.) = Y. iAX. + X.AY. (8.4a)
l l l-l l li

or

A(X.Y.) = Y.AX. + X. ,AY. (8.4b)
li li l-l l

Both of these equations represent the exact product. It should be noted

that the exact product also can be achieved by using the interpolating

trapezoidal algorithm (K = -1/2) for both functions.

To generate the new remainder R and the output AZ, we must

first update the integrand Y. This time slot can be used to perform

the addition of K AY.AX. to the old remainder. Each integrating cycle

then has the following three phases.

Phase 1: Pre-multiplication

AY. = A AV. (8.5)

Phase 2: Update the integrand and modify the remainder,
depending on the choice of algorithm

Y4 - Y + AY4 (8.6)

R* = Ri_1 + K AYiAXi (8.7)

Phase 3: Generate the integral output and new remainder,
and simultaneous post-multiplication

SEL-71-057 70

Ri = Ri + YiAxi " ^i (8.8)

R2± = R2i_1 + B A24 - AWt (8.9)

During the processing, only phase 1 and Eq. (8.6) depend on the value

of AX; therefore, whenever AX = 0, Eq. (8.7) and all of phase 3 do

not effect the outcome of the calculation and therefore may be deleted.

Normally, this case occurs quite frequently unless AX is supplied by

the machine time. Hence, to increase the solution speed further, the

machine will operate semi-asynchronously.

Although all operations occur in the same time slot during each

cycle, execution of Eq. (8.7) during phase 2 is prevented and the cycle

is terminated after this phase if AX = 0, provided that the equation

to be solved is contained in a single module and that no real-time ex-

ternal signals are used. In real-time problems and if the problem is

distributed over several modules, the processing operation must be syn-

chronous .

G. Programming and Interface

Since the system is completely modular, the programming is identi-

cal for each module; therefore, only one module will be considered here.

The module may be programmed automatically from a general-purpose compu-

ter containing the appropriate software-package or it may be programmed

manually. In either case, all programming steps are identical and must

be entered in the same order.

For the simplified machine which allows simultaneous post-multipli-

cation by a constant but not by a variable (this eliminates the indirect-

addressing step prior to post-multiplication), the program contains the

following information:

(1) number of integral cycles

(2) integral address (cycle no.)

(3) initial condition of the integer (Y)

71 SEL-71-057

HM

(4) initial condition of first remainder (R)

(5) ore-multiplication factor (A)

(6) post-multiplication factor (+/-.PY)

(7) initial condition of second remainder (PR)

(8) positive or negative independent-variable input, either
machine time or transmitted signal (+/-.T)

(9) addresses of dependent-variable inputs to which output
is to go (internal to module) (DYA)

(10) addresses of independent-variable inputs to which out-
put is to go (internal) (DX*)

(11) is integral increment to be used for adjacent module
(I/E)

(12) is integral increment used as output (0)

(13) addresses of d'^'iendent variable to which external input
is to go (DYAE)

Steps 2 through 13 are repeated for each integral cycle. Entering the

options of solution range (number of iteration cycles), repetitive oper-

ation, or solution reversal completes the program.

All this information is entered in binary form and is automatically

cycled to the appropriate memory-storage locations. As an example, let

us consider Eq. (2.15) in Chapter II:

•2 yy + y +1=0

or

dy = _' dy _ dx
y y

The solution diagram is repeated for convenience in Fig. 28. Assuming

the module is operating in conjunction with a general-purpose computer

containing the translator, the following input statements are required

to generate the DIC program:

SEL-71-057 72

■■■■■:■'< •

"»

■

;

INDV X

DEPV Y

DY1 = -(Y1)(DY/Y) - (DX/Y)

FIN

NUMBER OF EQUATIONS = 1

dx-

dy

dx-

dx-

IJH

Mi

—\ £l 3^-

l/y ®)
d(t/y)

l/y
© y

. ®
-C42

x^

'•^♦(lf)2^-o

Fig. 28. SOLUTION DIAGRAM FOR yy + y2 + 1 = 0.

73
SEL-71-057

■ im

" ' ' '

The first two statements are the declarations of the independent and

dependent variables, respectively. Following the declarations is a

list of all coupled equations to be solved. The form of the equation

statement is very similar to that of Eq. (8.10), but the dots over the

variables are replaced by a numeral to signify the order of the deriva-

tives (dy becomes DY2). FIN indicates the end of the equation list.

If other equations (uncoupled Irom the previous set) are to be solved

simultaneously, the FIN statement is replaced by NEXT and is followed

by the new declarations. Except for the operating options, the complete

DIC program for Eq. (8.10) is shown in Table 6. Again the assumption is

that, at most, 16 bits are to be used and all initial conditions are nor-

malized .

Table 6

DIC PROGRAM FOR dy = -y
dy dx

y y

Number of cycles = 6, and selection codes are always (0/1).

Cycle
(No.)

Y R A +/-, py PR +/-.T DYA DXA I/E 0 DYAE

1 1.00 0.50 4 0,1.00 0.50 0,1 6 2 0 0 —

2 1.00 0.50 4 0,1.00 0.50 0,0 — 3,5 0 0 —

3 1.00 0,50 4 1,1.00 0.50 0,0 2,3,4 ~ 0 0 —

4 0.25 0.50 1 1,1.00 0.50 0,1 1,5 — 0 0 --

5 1.00 0.50 4 1,1.00 0.50 0,0 1,5 — 0 0 —

6 0.25 0.50 1 0,1.00 0.50 0,1 — — 0 1 ~

The combined GPC-DIC system requires an interface to channel commu-

nications of input, output, and commands, and to match the data rates of

the two machines. To the GPC the interface will appear as an I/O chan-

nel and the DIC as some I/O device. Therefore, once the translator has

set up the program and it has been transmitted to the DIC, the GPC is

free to execute other programs. An additional function of the interface

is to act as an exit port for the immediate printing or display of DIC

problem solutions. Figure 29 is a block diagram of the combined system.

SEL-71-057 74

GPC

CONTROL

INTERFACE

ADDRESS

OIC

OATA
DATA

ADORESS

.STATUS

DATA

CONTROL L

DATA
TO DISPLAY EXTERNAL FUNCTIONS

Fig. 29. BLOCK DIAGRAM OF GPC-DIC COMBINED SYSTEM.

Although the DIC generates data at an extremely high rate, it is not

necessary to use a DMA (direct memory access) channel since typically

the solutions are read out only every hundred or even thousand itera-

tions. The interface will contain a reasonably large temporary storage

(512 words) to allow data transfer from the DIC to the GPC via a multi-

bit channel under program control, while at the same time allowing im-

mediate display on a CRT or some other device.

H. Computer Simulation

The basic module including the multiplication functions has been

simulated on the Stanford Computation Center IBM System 360 model 67.

The program was written in FORTRAN, and Fig. 30 is a listing of the

simulation. The input data are in essentially the same order and form

as they would be for the actual hardware machine, but the initial con-

ditions and some parameters are presented in decimal form. The program

execution follows exactly the steps and phases (Section F) of the pro-

posed machine with the exception that the calculations of R2 (the sec-

ond remainder) and the final output increment are separated to save com-

puting time. The simulation uses the two-loop number system.

After program read-in and verification, all variables and parameters

are initialized. The problem solution begins with the first iteration

75 SEL-71-057

. "I Iff' r i illHTiHUWi ilH«MI|l|ll"qfl

I NTEGER A, B, C, DY, ABY,M, N, OX, SR, TF.2, ABR, DZ1, I, K, L,H, ABPR, CNT, COUNT,
Cl TER CYC F

INTEGER Y(lb),RU6),PY(16),PR(lfc),un(16),UDA(16,16),XC(16,3),PMA(l
C6,2),XAU6,2),DZY(lb)

REAL X, CORRY,D,NOPMX,XMAX
DIMENSION YY(16),MXC16),N0RMY(lb)

i»00O FORMATCl','NO DATA FOUND FOR INTEGRATOR #' ,13/,.' INITIAL CONDITIO
CNS ARE ASSIGNED TO INTEGRATORS 1 THROUGH ',13///)

UOIO FORMATC ',3X,lb,7X,F7.5,5X,6(F7.5,3X))
i»020 FORMATC ',//,'*W A R N I N G •••*',//,'Y-VALUE OF INTEGRATOR #',l

C3,'EXCEEDED THE MAXIMUM VALUE OF',Ib/,'DURING ITERATION #',I6/,*TH
CE VALUE OF Y WAS ♦,-l,l6/,'Y IS RESET TO', 16/,6X, ' ***•*•)

«♦030 FORMATC ', ' I TERATI ON' , 10X, *X', 5X, 6(«, ' Y(', I 2, ')', IX))
l»0l»0 FORMATC ',3X, *IMTE-',2X,'SUM-DY INPUT IS\ 5X, 'DZ-POST- ', 8X, 'DZ GO

CES TO DY',8X,'DZ GOES TO DX1/,' ',2X,'GRATOR',3X,'SHIFTED UP BY',3
CX^MULTIPLICATION'.SX.'OF IINTEGRATORS', 7X,' OF INTEGRATORS',/)

«»050 FORMATC ' , 3X, I 3, 8X, 14, 10X,F10. 7, 6X, 16< I 2, ', '))
itObO F0RMATC*',68X,I3,',',I3)

COM READ IH PROGRAM, INITIAL CONDITIONS AND PARAMETERS
RFAD(5, *) I TER, XMAX, NORMX, CYC, M, N, COUNT
CNT»COUNT-l
DO 10 1-1,16
UD(I)«U

10 READ(5,*,END-20,ERR«20) MX(I),Y(I), R(I), PY(I), PR(I), (UDA(I , J), J-l,
C1G),(PMA(I,K),K=1,2),UA(I,K),K«1,2),(XC(I,L),L-1,3)

20 WRITE(6,1*000)1,1-1
WRITE<6,4040)

COM CLEAR AND INITIALIZE DY-STORAGE
COM PRINT CONNECTION TABLE AND PRE- AND POST-MULTIPLICATION
COM FACTORS FOR PROGRAM VERIFICATION.

DO i»0 l»l,CYC
NORMYCI)»M/MX(I)
K»l
DO 30 J=l,16
IF(UDA(l,J).NE.l) GO TO 30
DZY(K)-J
K-K+l

30 DZY(K)-0
WRITE(6,4050)I,PMA(I,1),PY(I)/(N+0.),(DZY(J),J»1,K)

1*0 WRITE(6,4060)(XA<I,J),J«=1,2)
WRITE(6,I»030)(I,I«1,CYC)

COM START ITERATIONS
DO 120 H»l,ITER

COM NORMALIZE X AND Y FOR OUTPUT
DO SO 1=1,CYC

50 YY(I)-Y(I)/NORMYCI)
X-(H-1)/N0RMX
IF(X.GT.XMAX) GO TO 120

COM OUTPUT Y IF CALLED FOR
COM DELETING THE FOLLOWING STATEMENT CAUSES
COM ALL Y'S (l-b)TO BE PRINTED : I F(PMA(1, 2KEQ.O) GO TO 60

CNT-CNT+1
IFCCNT.LT.COUNT) GO TO 60
WRITE(b,4010)H,X, (YY(I), 1*1, CYC)
CNT-0

60 CONTINUE
COM START CYCLE

DO 110 l«l,CYC
COM FETCH DY, PRE-MULTIPLY, CLEAR DY-STORAGE

DZ»0
DZ1»0
DY-UD'I)*2*«PMA(I,1)
UDCf)'0

COM UPDATE Y AND CHECK FOR Y-OVERFLOW
Y(I)-Y(I)*DY
ABY-IABSCY(I))
IF(ABY.LE.M) GO TO 70
Y(I)-ISIGN(ABY-M,Y(D)
WRITE(6,l»020)l,MfH,ABY,Y(l)

70 CONTINUE

Fig. 30. FORTRAN SIMULATION PROGRAM OF DIC MODULE.

SEL-71-057 76

. ..-.-.• ■"■■ . ■-..■

&<M*MR.

COM

COM
COM
COM

COM

COM
COM

COM

80
COM

90
COM

100
110
120

COM
COM
COM
COM
COM
COM

DETERMINE SOURCE OF OX
DX-XC(I,2)
IF(DX.EQ.O) DX-XC(I,1)
XC(!,l)-0
A-l
PREDICT INTEGRL. INCREMENT OUTCOME
AND DO POS1-MULTI PLICATION, STORE POST-MULT. OUTPUT IN
TEMPORARY STORAGE
SR-ISIGN(A,R(I))
TR2"PR(I)*SR«PY(I)
CHECK VALUE OF DX, TERMINATE CYCLE IF DX-0
IFCDX.EQ.O) GO TO 110
COMPUTE REMAIMDEP 1 (R) AND INTGRL. OUTPUT DZ1
DISCARD REMAINDER 2 AND POST-MULTI PL. OUTPUT IF DZ1-0
R(I)-R(I)*Y(I)*DX
ABR»IAB3(R(I))
IF(ABR.LE.M) CO TO 80
R(I)-ISIGN<ABR-M,R(I))
DZ1-SR
STORE REMAINDER 2, ASSIGN FINAL OUTPUT INCREMENT
PRCD-TR2
ABPR-IABSUR2)
IF(ABPR.LE.N) GO TO 80
PR(I)-ISIGN(A8PR-N,TR2)
DZ»ISIGN(A,PR(I))
CONTINUE
ROUTE OUTPUT DZ TO DESIRED DY INPUT STORAGE LOCATIONS
DO 90 K-1,CYC
C«UDA(I,K)
IF(C.EQ.O) GO TO 90
UD(K)-UD(K)*OZ
CONTINUE
ROUTE OUTPUT DZ TO DESIRED DX INPUT STORAGE LOCATIONS
DO 100 K-1,2
D»XA(I,K)
IF(D.EQ.O) GO TO 100

XC(D,1)-0Z
CONTINUE
CONTINUE
CONTINUE
THE FIRST DATA CARD CONTAINS (SEPERATED BY SPACE OR COMMA) :
ITER XMAX NORMX CYC M N COUNT
THE NEXT DATA CARD MUST BE REPEATED FOR EACH CYCLE USED
MX(I) Yd) R(l) PY(I) PR(I) UDA(,) PMAC) XA(,) XC(,)
Y,R,PY, PR ARE INTEGER INITIAL CONDITIONS
MX IS A REAL, THE NEAREST POWER OF 2 SUCH THAT (MX.GE.Y-MAX)
RETURN
END

$DATA
$STOP

Fig. 30. CONTINUED.

(Loop 120). After each iteration, those integrands that are desired as

output are printed provided that the iteration number is a multiple of

COUNT (the specified output interval). Loop 110 contains all calcula-

tions for each cycle. The computation follows the steps in Section A,

again with the exception that part of the post-multiplication operation

occurs before the generation of the integral increment and remainder

(step 5). The program has been executed with various input data sets,

and it performed as predicted with no instabilities.

77 SEL-71-057

«WMBMPtl. .>„.*-!

Chapter IX

CONCLUSION

The goal of this work has been the development of a machine struc-

ture that would be useful for the numerical solution of differential

equations. Of the various requirements spelled ou. in Chapter III, the

most important consideration has been to achieve a system which would

be easy to use and which eventually may lead to an integrated GPC-DIC

system, such that the DIC would constitute simply an addition to the

GPC processor. The proposed machine has been simulated on a general-

purpose computer and the program performed satisfactorily.

A modular computing structure has been introduced, which employs

a serial-parallel processing approach. This approach maintains some

of the simplicity of communications in serial machines while, at the

same time, setting an upper limit on the iteration time regardless of

the complexity or size of the problems to be solved. The solution

speed of problems that do not require all available modules may be

increased by dist_Jbuting the functions evenly over all modules.

A differential equation is considered tc be represented by a num-

ber of points in a matrix, where each point designates some integral

function whose output must be communicated to other points. This rep-

resentation leads to two basic methods of inter-module communication:

"vertical" and "horizontal" communication. Each of these methods has

its advantages; however, because horizontal communication is more ap-

propriate for a wider variety of problems, it has been chosen for the

proposed machine.

To eliminate instabilities and oscillations that are inherent in

circular number systems and can occur whenever the value is at or near

the maximum or minimum, a two-loop number system was introduced. The

system has separate positive and negative loops returning to 0 and -1,

respectively. Extending the loops such that they overlap but are not

identical resul • in a number system with a hysteresis.

The propose . machine contains within its processor both pre- and

post-multiplicat jn of the integral increments. It has been shown

that, for the given number system, the outcome of the integrating

Preceding page blank 79 SEL-71-057

cycle can be predicted sufficiently to allow post-multiplication to

occur simultaneously with integration. The integral output may be

multiplied by either a constant or a variable. Theoretically, the

concept of simultaneous integration and post-multiplication can be

extended to include any number of post-multiplication factors (both

constants and variables).

A simplified method that allows floating-point arithmetic has

been introduced, which requires the storing of only a single expo-

nent for each integral cycle. The use of floating-point arithmetic

provides dynamic scaling during computations, thereby increasing the

accuracy of problem solutions. It also allows the scaling routine

contained in the software to be simplified because any inequalities

that may occur in the scaling equations can be corrected automati-

cally by an appropriate change of the respective function exponent.

This floating-point method does permit simultaneous integration and

multiplication.

Hardware construction and testing cf at least two DIC modules

would be very useful. As experimental information is gathered, the

full capabilities of the system can be determined and f '.rther im-

provements may suggest themselves. Future work should be conducted

to study the feasibility of hardware incorporation of a unit such as

the DIC into general-purpose computers such that the unit woulH ap-

pear as another processor. Further study of the "vertical communica-

tior" approach is warranted because, in particular applications, this

approach may lead to a superior system.

SEL-71-057 80

i'!*^^sg^ifmefr^&^^^»^mxr-t i

BIBLIOGRAPHY

Bartee, T. C, Digital Computer Fundamentals, McGraw-Hill Book Co., New
York, 1966.

Bartee, T. C, Lebow, I. L., and Reed, I. S., Theory and Design of Digi-
tal Machines, McGraw-Hill Book Co., New York, 1962, pp. 252-269.

Bartee, T. C. and Lewis, J. B., "A Digital System for On-Line Studies
of Dynamical Systems," Proc. of the Spring Joint Computer Confer-
ence, 29, 1966, pp. 105-111. ' ' "'

Bekey, G, A. and Karplus, W. J., Hybrid Computation, John Wiley & Sons,
New York, 1968.

Borsky, V. and Matyas, J., Computation by Electronic Analogue Computers,
American Elsevier Publishing Co., Inc., New York, 1968. ™

Bradley, R. E. and Genna, J. F., "Design of a One-Megacycle Iteration
Rate DDA," Proc. of the Spring Joint Computer Conference (AFIPS),
21, 1962, pp. 253-364.

Braun, E. L., Digital Computer Design, Academic Press, New York, 1963.

Cunningham, W. J., Introduction to Nonlinear Analysis, McGraw-Hill Book
Co., New York, 1958. —■--—■ -

Elshoff, J. L. and Hulina, P. T., "The Binary Floating Point DDA," AFIPS
Proc. of Fall Joint Computer Conference, 1970, pp. 369-376.

Fenyö, S. and Frey, T., Moderne Mathematische Methoden in der Technik,
Birkäuser Verlag, Basel and Stuttgart, 1967.

Forbes, G., Digital Differential Analyzer, Pacoima, California, 1956.

Fowler, M. E., "Numerical Methods for the Synthesis of Linear Control
Systems," Automatica, 1, Pergamon Press, London, 1963, pp. 207-225.

Fowler, If. E., "Numerical Methods for Use in the Study of Spacecraft
Guidance and Control Systems," Report No. 38.003, IBM Scientific
Center, Palo Alto, Calif., 1966.

Gilbert, E. G., "Dynamic Error Analysis of Digital and Combined Analog-
Digital Computer Systems," Simulation, 6, 4, Apr 1966, pp. 241-257.

Gill, A., "Systematic Scaling for Digital Differential Analyzers," IRE
Trans, on Electronic Computers, EC-8, Dec 1959, pp. 486-489.

Goldman, M. W., "Design of a High Speed DDA," AFIPS Proc. of Fall Joint
Computer Conference, 1965, pp. 929-949.

Grabbe, E. M., Ramo, S., and Wooldridge, D. E, (Eds.); Handbook of Auto-
mation, Computation, and Control, Vol. 2, "Computers and Data Pro-
cessing," John Wiley & Sons, New York, J959.

81 SEL-71-057

Gschwind, H., "Digital Differential Analysers," (Ed., P. von Handel),
Electronic Computers, Cb. 4, Springer-Verlag, Vienna, 1961.

Hills, F. B., "A Study of Incremental Computation by Difference Equa-
tions," Report No. 7849-R-l, Electronics Systems Labs, M.I.T., May
1958.

Hyatt, G. P. and Ohlberg, G., "Electrically Alterable Digital Differen-
tial Analyzer," AFIPS Proc. of Spring Joint Computer Conference,
1968, pp. 161-169.

Knuds jn, H. K., "The Scaling of Digital Differential Analyzers," IEEE
Trans, on Electronic Computers, Aug 1965.

Levine, L., Methods for Solving Engineering Problems Using Analog Compu-
ters, McGraw-Hill Book Co., New York, 1964.

Malvino, A. P., "Real-Time Digital Function Generation," Ph.D. disserta-
tion, Stanford University, Stanford, Calif., Sep 1969.

Mayorov, F., Electronic Digital Integrating Computers, American Elsevier
Publishing Co., Inc., New York, 1964.

McGhee, R. B. and Nilsen, R. N., "The Extended Resolution Digital Differ-
ential Analyzer: A New Computing Structure for Solving Differential
Equations," IEEE Trans, on Computers, C-19, Jan 1970, pp. 1-9.

Mitchell, J. M. ard Ruhman, S., "The Trice-A High Speed Incremental Com-
puter," IRE T itional Convention Record, 6, Part 4, 1958, pp. 206-216.

Monroe, A. J., Digital Processes for Sampled Data Systems, John Wiley &
Sons, New York, 1962.

Nelson, D. J., "A Foundation for the Analysis of Analog-Oriented Combined
Computer System, " TR No. 1002-1, Stanford Electronics Laboratories,
Stanford, Calif., Apr 1962.

Nelson, D. J., "DDA Error Analysis Using Sampled Data Techniques," AFIPS
Proc. of Spring Joint Computer Conference, 1962, pp. 365-373.

Nilsen, R. N., "An Investigation of High Resolution Digital Differential
Analyzers," USCEE Report 272, Electronic Sciences Lab., Univ. of
Southern California, May 1968.

Owen, P. L., Partridge, M. F., and Sizer, T. R. H., "A Transistor Digital
Differential Analyser," Journal British I.R.E., Aug 1961, pp. 83-96.

Peterson, A. M., lecture notes, EE 283, Stanford University, 1968.

Raimondi, A., "Digital Filtering Using Digital Differential Analyzers,"
Ph.D. dissertation, Stanford University, Stanford, Calif., 1971.

SEL-71-057 82

Sage, A. P. and Burt, R. W., "Optimum Design and Error Analysis of Digi-
tal Integrators for Discreet System Simulation," Proc. of Fall Joint
Computer Conference, 28, 1965, pp. 903-914.

ft »
Scarborough, J. B., Numerical Mathematical Analysis, The Johns Hopkins

Press, Baltimore, Md., 1966.

Schulz, E. J. and Parasuraman, B., "The Digital Incremental Computer:
A New Computing Structure for the Numerical Solution of Differen-
tial Equations," Scientific Report No. 36, Stanford Electronics
Laboratories, Stanford, Calif., Jun 1971.

Sizer, T. R. H. (Ed.), The Digital Differential Analyser: An Incremen-
tal Computer, Chapman and Hall, London, 1968.

Tomovic, R., Introduction to Nonlinear Automatic Control Systems, John
Wiley & Sons, New York, 1966.

Truitt, T. D., "An Analog-Digital Real-Time Computer," IRE Trans, on
Computers, Feb 1962, pp. 46-52.
———-^—-

Wood, P. E., "Digital Differential Analyzers with Arbitrary Stored In-
terconnections, " Professional Group on Electronic Computers, EC-14,
6, Dec 1965, pp. 936-941.

Yu, C.-P., "Digital Filter Design Technique and the Realization of Trans-
fer and Immittance Functions by Using Digital Elements," Scientific
Report No. 22, Stanford Electronics Laboratories, Stanford, Calif.,
Nov 1967.

Yu, C.-P., "Circuit Synthesis Utilizing Digital Variable-Precision-Inte-
grating and Summing Elements," Scientific Report No. 30, Stanford
Electronics Laboratories, Stanford, Calif., Dec 1968.

83 SEL-71-057

